A Very Close Look at the Eye

Diagramming the wiring of retinal neurons is a first step toward mapping the brain.

The human brain has 100 billion neurons, connected to each other in networks that allow us to interpret the world around us, plan for the future, and control our actions and movements. MIT neuroscientist Sebastian Seung wants to map those networks, creating a wiring diagram of the brain that could help scientists learn how we become our unique selves.

mapped arrangement of neurons
Neuroscientists mapped the arrangement of neurons in a section of mouse retina after imaging the tissue with electron microscopy.

Seung and collaborators at MIT and the Max Planck Institute for Medical Research in Germany recently reported their first step toward this goal: using a combination of human and artificial intelligence, they mapped all the wiring connecting 950 neurons within a tiny patch of a mouse retina.
Composed of neurons that process visual information, the retina is technically part of the brain and is a relatively approachable starting point, Seung says. Retinal neurons fall into one of five classes—photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells. Each contains many types, classified by shape and by the connections they make with other neurons. “The retina is estimated to contain 50 to 100 types, but they’ve never been exhaustively characterized,” he says. “And their connections are even less well known.”

By mapping all the neurons in this 117-by-80-micrometer patch of retinal tissue, the researchers were able to classify most of the neurons they found. They also identified a type of retinal cell that had not been seen before.

“It’s the complete reconstruction of all the neurons inside this patch. No one’s ever done that before in the mammalian nervous system,” says Seung, a professor of computational neuroscience at the Institute.

The researchers began by taking electron micrographs of the targeted section to make high-resolution 3-D images. To develop a wiring diagram from these images, they first hired about 225 German undergraduates to trace the “skeleton” of each neuron, which took more than 20,000 hours of work over several years.

Next the researchers fed these traced skeletons into a computer algorithm developed in Seung’s lab. The algorithm detects the boundaries between neurons and then fills in each neuron’s body, making it easier for researchers to see where the neurons contact each other.

If human workers filled in the neuron bodies, it would take 10 to 100 times longer than just drawing the skeleton. The only previous complete wiring diagram, which mapped all the connections between the 302 neurons found in the worm Caenorhabditis elegans, was reported in 1986 and required more than a dozen years of tedious labor.

“This speeds up the whole process,” Seung says. “It’s a way of combining human and machine intelligence.”

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.