Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Nanotube Probe Gives a Single Neuron’s View of Brain Activity

A thin probe of carbon nanotubes can measure small electrical changes inside a neuron.

Monitoring the voltage changes inside a neuron could help neuroscientists understand how the cell computes the information it receives from large networks of other neurons.

A tiny spear made of carbon nanotubes can probe the internal electrical activity of a single neuron, giving researchers a more refined look at how brain cells respond to signals from their neighboring cells. Probing the brain at this resolution could be vital to efforts to understand and map its function in new detail (see “Why Obama’s Brain-Mapping Project Matters”).

Hook on: A micrograph shows a new brain electrode that is thin and long enough to record from inside a single neuron.

The neuron “harpoons” are just 5 to 10 micrometers wide and can pierce a living cell to measure electrical changes associated with neuronal signaling. In dissected slices of still-active mouse brain tissue, researchers at Duke University were able to record from inside a single neuron at a time.

“To our knowledge, our paper shows the first intracellular recording with carbon nanotubes from vertebrate neurons,” says Bruce Donald, a biochemist and computer scientist at Duke University and author on the study, which was published in PLoS ONE on Wednesday.

Carbon nanotubes have many desirable properties for brain recordings, says Donald: they are strong, they are compatible with body tissues, and they conduct electricity well. But previous devices built from carbon nanotubes have been too short or wide to be well suited for recording inside cells. The probes built by the Duke researchers, however, were around one millimeter long and lent themselves to monitoring electrical activity more precisely than typical glass or metal electrode setups.

scanning electron microscope
Sharp end: The neuro-harpoon comes to a very fine point.

The team was able to detect small changes in electrical activity in the cell—changes corresponding to the input signals the neuron was receiving from other neurons. An average cortical neuron can receive signals from around 10,000 other neurons, says Richard Mooney, a neuroscientist at Duke University and an author on the study. “Individually, those generate very small signals,” he says. Together, the collection of signals is computed by the receiving neuron as it decides whether or not to fire.

Intracellular recordings could be useful for mapping the functional connections between neurons, a goal of the recently launched BRAIN initiative (see “The Brain Activity Map”). “By being able to look inside the cell and measure small voltage changes, you get access to the network that talks to that cell,” say Mooney.

The researchers used a “clever technique” to build their device, says Takashi Kozai, a neural engineer who was not involved in the study. Starting at the tip of a tungsten wire, they built up a long needle-like probe made of tangled carbon nanotubes. Then they coated the probe with an insulating material and used a focused beam of ions to bombard the tip, removing the insulation from that area and shaving it to a fine point.

“With this technique, you can make [probes] as long as you want,” says Kozai, who is also developing microscopic electrodes for recording neuron activity (see “A Carbon Microthread That Makes Contact with the Mind”). The work “sets the stage for making even narrower devices, maybe on the order of 100 nanometers instead of microns,” he says.

In addition to dissected brain slices, the team tested their thin electrode in anesthetized mice, although they were not able to obtain recordings from inside the brain cells of these animals. However, if future versions of the nanotube tip are even sharper, they may be able to better pierce cells in soft and spongy brains, says Kozai. If that’s possible, and if the device is stable in living brains over time, it could help researchers explore how the living brain learns and remembers.

“If they can stably record from the same cell longitudinally,” Kozai says, “it could be applied to map how neurons change during memory formation and learning.”

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.