We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

The Phosphorous Atom Quantum Computing Machine

An Australian team unveils the fundamental building block of a scalable quantum computer that could be embedded in today’s silicon chips.

  • May 22, 2013

Back in the late 90s, a physicist in Australia put forward a design for a quantum computer. Bruce Kane suggested that phosphorus atoms embedded in silicon would be the ideal way to store and manipulate quantum information.

His idea was that the nucleus of the phosphorus atom could store a single qubit for long periods of time in the way it spins. A magnetic field could easily address this qubit using well-known techniques from nuclear magnetic resonance spectroscopy. That would allow single-qubit manipulations but not two-qubit operations, because nuclear spins do not interact significantly of each other.

For that, he suggested transferring the spin to an electron orbiting the phosphorus atom, which would interact much more easily with an electron orbiting a nearby phosphorus atom. Two-qubit operations would then be possible by manipulating the two electrons with electric fields.

The big advantage of the Kane quantum computer that excited many physicists at the time was that it was scalable. Since each atom could be addressed individually using standard electronic circuitry, it is straightforward to increase the size of the computer by adding more atoms and their associated electronic paraphernalia and then to connect it to a conventional computer.

Building a Kane quantum computer has become almost an obsession in Australia, where some 100 researchers have been working on the problem for over a decade.

They’ve made breakthroughs such as being able to implant phosphorus atoms at precise locations in silicon using a scanning tunnelling microscope. They’ve also been able to address the nuclear spins of these phosphorus atoms using powerful magnetic fields.

But the big unsolved challenge has been to find a way to address the spin of an individual electron orbiting a phosphorus atom and to read out its value.

Today, Jarryd Pla at the University of New South Wales in Sydney, and a few pals, say they’ve conquered this task the first time.

These guys implanted a single phosphorus atom in a silicon nanostructure and placed it in a powerful magnetic field at a temperature close to absolute zero. They were then able to flip the state of an electron orbiting the phosphorus atom by zapping it with microwaves.

The final step, a significant challenge in itself, was to read out the state of the electron using a process known as spin-to-charge conversion.

The end result is a device that can store and manipulate a qubit and has the potential to perform two-qubit logic operations with atoms nearby; in other words the fundamental building block of a scalable quantum computer.

“These results indicate that the electron spin of a single phosphorus atom in silicon is an excellent platform on which to build a scalable quantum computer,” say the team.

That looks to be a big advance for Australia’s effort to make a scalable quantum computer.

However, some stiff competition has emerged in the 15 years since Kane published his original design. In particular, physicists have found a straightforward way to store and process quantum information in nitrogen vacancy defects in diamond.

Then there is D-Wave Systems, which already manufactures a scalable quantum computer working in an entirely different way that it has famously sold to companies such as Lockheed Martin and Google.

The big advantage of the Australian design is its compatibility with the existing silicon-based chip-making industry. In theory, it will be straightforward to incorporate this technology into future chips.

Whether that’s what will happen in practice is hard to tell. Being first to market is a big advantage in the high-tech world and the Australian design is still years away from emerging from the labs.

There are plenty of hurdles to come that could down any of these emerging technologies. This race is far from over.

Ref: arxiv.org/abs/1305.4481: A single-Atom Electron Spin Qubit in Silicon

Blockchain is changing how the world does business, whether you’re ready or not. Learn from the experts at Business of Blockchain 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.