We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Regaining Lost Brain Function

How do you make an electronic brain prosthesis that could restore a person’s ability to form long-term memories? Recent experiments by Theodore Berger and his colleagues, including Sam Deadwyler at Wake Forest Baptist Medical Center in Winston-Salem, North Carolina, and researchers at the University of Kentucky in Lexington, have begun to describe how it might be done.

Last year, the team showed that an implant that records the activity of one set of neurons and directs the activity of another can replace lost brain function in monkeys. The researchers used an array of electrodes to measure the electrical activity of neurons in the animals’ prefrontal cortex, a brain region involved in decision making that directs many types of cognitive responses associated with memory. Five monkeys were trained to perform a memory task in which they were shown an image on a screen and then had to use hand movements to steer a cursor to that image when they were subsequently shown a collection of clip-art pictures.

The monkeys’ neural activity was recorded by a tiny ceramic-enclosed electronic device and relayed to an external computer. In the first part of the experiment, the researchers analyzed the brain activity they had recorded from the cortex. But then came the hard part. Memory is formed when one set of neurons processes the signals from another set, but how can you replicate this processing in an electronic device? First, you have to figure out the code the brain is using. From the initial recordings, the research team was able to extrapolate what’s called a MIMO model—short for multi-input/multi-output. This type of mathematical model can characterize the neural firing patterns detected by the electrode implant and, after processing the patterns, spit out the signals that instruct other neurons to form the appropriate memory.

To demonstrate that their model worked, the researchers gave the monkeys cocaine. The cocaine-addled monkeys had trouble remembering the correct image. But with the implant in place and the MIMO model translating the incoming signals and feeding data back to another set of neurons, they were able to pick out the right picture about as reliably as usual, if not slightly more so.

But how could a doctor replace a brain function, such as the ability to form long-term memories, that someone had already lost? In that case, it wouldn’t be possible to simply mimic a previous example of how the individual’s brain worked and duplicate it in the electronic device. However, preliminary work suggests that a recording from a healthy person’s brain could be used in the injured or sick. “We’ve recorded from a number of rodents and were able to derive a generic model for certain kinds of processing,” says Deadwyler. The research team will need to see if the same rules apply to primates. If they do, it might mean that a MIMO model could be used to form “a generic pattern that would resemble the kind of processing most of us do with respect to certain kinds of tasks,” says Deadwyler.

Countdown to EmTech Digital 2019. Join us and be the AI leader your company needs.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.