We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

A Flexible Keyboard with Buttons That Feel Clickable

Transparent, shape-changing plastics could make touch screens and keyboards that stimulate users’ sense of touch.

Touch screens are increasingly common, but their keyboards can be awkward to use.

A very thin keyboard that uses shape-changing polymers to replicate the feel and sound of chunky, clicking buttons could be in laptops and ultrabooks next year. Strategic Polymers Sciences, the San Francisco-based company that developed the keyboard, is working on transparent coatings that would enable this feature in touch screens.

Haptic Keyboard
Clickable keys: A flexible keyboard developed by Strategic Polymer Sciences features virtual buttons.

Today’s portable electronics provide rudimentary tactile feedback—many cell phones can vibrate to confirm that the user has pressed a button on a touch screen, for example. These vibrations are produced by a small motor, meaning the entire phone will move rather than just the appropriate spot on the screen where the button is, and there can be a lag in response time.

“It’s amazing how fast software has grown to compensate for problems with touch screens—and sometimes you still text a word that’s the opposite of what you mean,” says Christophe Ramstein, CEO of Strategic Polymers. Haptics researchers hope to improve user interfaces by making the sensations of interacting with virtual buttons more like touching physical objects.

Strategic Polymers’ technology is a polymer that dramatically and rapidly changes its shape under an applied electric field. The letters on the company’s haptic keyboard vibrate to confirm that they’ve been pressed; that vibration can also be used to create sound waves, so the keys can click, or even play music. The advantage of the haptic keyboard over one with physical buttons, says Ramstein, is that it’s just 1.5 millimeters thick, and it’s flexible. Ramstein says the company, which has manufacturing facilities in State College, Pennsylvania, plans to ship the keyboards to equipment manufacturers in 2014.

There are other materials that provide this kind of response to electric fields, but they don’t have the ideal balance of properties, says Qiming Zhang, cofounder of the company and a professor of electrical engineering at Penn State University. On the one side, there are very hard ceramic materials called piezoelectrics that can respond rapidly to voltage, but don’t provide much shape change. On the other are other electrically responsive polymers that can dramatically change shape but work slowly. The new polymers respond in milliseconds, change their shape by as much as 10 percent, and respond to small voltages, says Zhang.

“There’s a sweet spot where you can generate vibrations particularly attuned to the human sense of touch,” says J. Edward Colgate, professor of mechanical engineering at Northwestern University in Evanston, Illinois, who is not affiliated with the company.

“These materials are hard to break and you can form them into different shapes,” he says. Since the polymers are transparent and flexible, they could be molded onto steering wheels, wearable electronics, touch screens, and other places, he notes.

Indeed, Ramstein says the company’s future products will take advantage of the polymers’ transparency and flexibility. One prototype is a cell phone with pads on the back that vibrate to indicate right and left turns or notable sights during navigation. The company is also working on a fully transparent keyboard with buttons that would physically pop up from the surface of a touch screen when activated, and then return to a smooth state. 

AI and robotics are changing the future of work.  Are you ready?  Join us at EmTech Next 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.