Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

The Paper-and-Pencil Cosmological Calculator

Ever struggled with the problem of converting redshift into parsecs, your worries are over thanks to a new cosmological distance chart based on the very latest data

  • April 3, 2013

Examine the light from a distant galaxy and you’ll notice that it is significantly different to light from nearby stars: its wavelength will be increased or shifted towards the red part of spectrum. This so-called redshift is the result of an object’s movement away from us–you can hear the same effect in the pitch of police car sirens when they move past us at speed.

Redshift plays a hugely significant role in astronomy.  Early in the last century, the astronomer Edwin Hubble noticed that the amount of redshift was proportional to an object’s distance. So more distant objects have a bigger redshift.  That’s an extraordinary discovery because it clearly implies that the universe must be expanding. It also means that objects with bigger redshifts must be older.

Today, astronomers often do away with traditional distance measurements entirely, never mentioning kilometres or even light years. Instead, they talk only in terms of redshift. For example, the most distant galaxy, known as UDFy-38135539, has a redshift of 8.6 and dates from some 600 million years after the Big Bang. The cosmic microwave background radiation, which is made of light emitted 379,000 years after the Big Bang, has a redshift of 1089. And the yet-to-be-observed cosmic neutrino background, emitted just 2 seconds after the Big Bang, should have a redshift of 1010.

But how far way are these objects in kilometres or light years? If you’ve ever tried to convert redshift into kilometres, parsecs or light years, you’ll know the task is fraught with difficulty. For a start, the calculation depends on the model of the universe you use, whether flat or expanding for example. Then there are the actual parameters of the model that need to be measured from the universe itself, such as the value of Hubble constant.    

Not even Google does this kind of distance conversion. 

Today, all that changes thanks to the work of Sergey Pilipenko of the Astrospace Center of the Lebedev Physical Institute in Moscow. Pilipenko has taken the necessary parameters from the latest Planck telescope results, unveiled last week, and has plugged them into a standard model of the universe called Lambda-CDM, which includes the effects of dark energy and cold dark matter. 

The result is a series of simple charts showing the relationship between redshift, parsecs, age and a few other parameters. (He’s even made public the code that performs the calculation.) The chart above shows the relationship for redshifts less than 20. 

For a closer look follow the link below.

Ref: arxiv.org/abs/1303.5961: Paper-And-Pencil Cosmological Calculator

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.