Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Rewriting Life

Photovoltaic Polymer Lets Damaged Retinas See the Light

A light-sensitive polymer could offer a new way to develop artificial retinas.

Artificial retinas could restore meaningful vision to some blind people.

A team of neuroscientists and materials scientists has shown that a photovoltaic polymer can restore light-sensing capabilities to damaged retinas, offering hope of a simple way to restore vision to many people with degenerative eye disease.

Shine on: In this illustration, electrical activity (blue) moves down a neuron stimulated by a photovoltaic polymer that is exposed to light (green).

People with retinitis pigmentosa and some forms of macular degeneration lose their sight because their photoreceptor cells—the light-detecting rods and cones in their retinas—stop working or die. The new work, conducted by scientists from the Italian Institute of Technology in Genoa and published on Sunday in the journal Nature Photonics, suggests that incorporating the organic polymer into the retinas of people with such conditions could one day help solve this problem. The polymer, which converts light into electrical stimulation, does not require the power supply that’s been necessary with other artificial retina prosthetics.

Other groups have developed retinal implants—electrode arrays that replace the function of the missing cells (see “Microchip Restores Vision” and “Bionic Eye Implant Approved for U.S. Patients”). But these systems offer limited resolution and depend on stiff microchips that can’t conform to the curvature of the inner eye.

“Even a thin silicon chip is not bendable, so an organic polymer could be the next generation of potential retinal prostheses that could allow a greater coverage over parts of the retina because it allows for bending,” says Stephen Rose, chief research officer at the nonprofit Foundation Fighting Blindness.

The Italian researchers, led by neuroscientist Fabio Benfenati and materials scientist Guglielmo Lanzani, began with what Benfenati calls a “crazy idea”: to “try and grow neurons on top of these photovoltaic polymers and see whether illumination of the polymer could induce excitation of the neurons.” As he and his coauthors reported in 2011, this turned out to be possible.

In the new study, damaged retinas were placed on a piece of glass coated with the polymer. Benfenati and colleagues recorded the electrical activity of remaining retinal neurons that would normally send axons into the brain in response to light. When they shined a light onto the setup, they found neuron activity similar to what would be observed in an undamaged retina. They hypothesize that when the polymer is exposed to light, negative charges accumulate on its surface; these negative charges strip positive charges from the outside of the neuron, causing it to fire.

The retinas on the polymer-coated glass responded to daylight levels of brightness, which means the technology “has the potential for retinal implants,” says Benfenati. However, the polymer did not respond to the full range of dimness and brightness that normal photoreceptors can handle. The authors suggest that future generations of the film may be able to do so. In the meantime, they have begun testing polymer-coated implants in rats with retinitis pigmentosa.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivery each weekday to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.