We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Research Hints at Graphene’s Photovoltaic Potential

Newly observed properties mean graphene could be a highly efficient converter of light to electric power.

Graphene is a relatively novel material with unique properties that could make it useful in photovoltaic devices.

Researchers have demonstrated that graphene is highly efficient at generating electrons upon absorbing light, which suggests that the material could be used to make light sensors and perhaps even more efficient solar cells.

Conventional materials that turn light into electricity, like silicon and gallium arsenide, generate a single electron for each photon absorbed. Since a photon contains more energy than one electron can carry, much of the energy contained in the incoming light is lost as heat. Now, new research reveals that when graphene absorbs a photon it generates multiple electrons capable of driving a current. This means that if graphene devices for converting light to electricity come to fruition, they could be more efficient than the devices commonly used today.

Previous theoretical work had inspired hope that graphene had this property, says Frank Koppens, a group leader at the Institute of Photonic Sciences in Spain, who led the research. He says the new result, described this week in Nature Physics, represents the first experimental proof.

To perform the experiment, the researchers used two ultrafast light pulses. The first sent a prescribed amount of energy into a single layer of graphene. The second served as a probe that counted the electrons the first one generated.

solar graphene device
PV potential: Graphene, the atomic structure of which is seen in this conceptual illustration, has been shown to have promising optical properties.

Koppens says the phenomenon described in the new paper will probably have the most immediate impact in the field of image sensing; his lab is working on a prototype device. He’s “reasonably confident” the group can enhance the performance of light sensors like those used in cameras, night vision goggles, and certain medical sensors.

Among Koppens’s collaborators were MIT physics professor Leonid Levitov and Justin Chien Wen Song, a graduate student in Levitov’s lab, who helped Koppens interpret the data through theoretical modeling.

Although the work only hints at possible solar applications, it shows that graphene could be considered a candidate for use in so-called third-generation solar cells. The term refers to yet-to-be-developed technologies that would overcome the physical limits of conventional solar cells and reach much higher efficiencies. Today’s silicon cells have a theoretical efficiency limit of around 30 percent. Solar cells made of graphene might have a theoretical limit of over 60 percent.

Koppens says many engineering challenges stand in the way of that, though, not the least of which is figuring out how to extract power from the system.

The new paper illustrates a “very important concept,” since future devices will depend on an understanding of the physical processes that occur when graphene absorbs light, says Andrea Ferrari, a professor of nanotechnology at the University of Cambridge in the U.K. Ferrari, who was not involved with this research, says he and colleagues have a still-unpublished paper that describes a similar result. Demonstrating this property in graphene opens a promising new field of research, he says.

Graphene was already exciting as a photovoltaic material because of its unique optical properties, Ferrari explains. The material “can work with every possible wavelength you can think of,” he says. “There is no other material in the world with this behavior.” It is also flexible, robust, relatively cheap, and easily integrated with other materials. The new research “adds a third layer of interest to graphene for optics,” he says.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.