Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Graphene And The EmergingTechnology of Neural Prostheses

Neural implants are set to be revolutionised by a new type of graphene transistor with a liquid gate, say bio-engineers

  • February 18, 2013

The emerging technology of neural prostheses has the power to change what it means to be human. The ability to implant electrodes into the eyes ears, spine or even the brain has the potential to overcome degenerative disease, mend broken bodies and even enhance our senses with superhuman abilities.

But despite numerous trials of electronic devices implanted into the human body, there are still many challenges ahead. The problem is that most of these devices are based on silicon substrates which are hard, rigid and sharp. Those are not normally qualities that sit well with soft tissue.

Consequently, any small movement of these devices can damage nearby tissue and in the worst cases, form scar tissue. What’s more, the hot, wet and salty environment inside the body can damage electronic components, limiting their lifespan. 

What’s needed, of course, is a flexible substrate that is also biocompatible with human tissue. Now Lucas Hess and pals at the Technische Universität München in Germany say they’ve found the ideal material–graphene. Today, they outline their plans for graphene-based neural prostheses and the experiments they’ve already done to test its biocompatibility.

Graphene is ideal because carbon “chicken wire” is only a single atom thick and therefore highly flexible. It is also held together by carbon bonds, which are among the most stable known to chemists. That means it should be relatively stable inside the human body.

But graphene has another advantage. Hess and pals have shown how it is possible to use it to make transistors that are gated by the solution in which the transistor sits. In other words, the natural body fluids that surround these prostheses will form an integral part of their operation.

So-called solution-gated transistors are much more sensitive to electronic changes in their environment than conventional silicon devices. “[Graphene-based] devices…far outperform current technologies in terms of their gate sensitivity,” say Hess and co.

These guys have begun to test graphene interfaces with various cells such as retinal ganglion cells, reporting that graphene has excellent biocompatibility.

Of course, working graphene-based neural prostheses are some way in the future.  But Europe recently announced an investment of €1 billion in graphene research over the next ten years. If that doesn’t buy some significant progress in this area, nothing will.

Ref: arxiv.org/abs/1302.1418: Graphene Transistors For Bioelectronics

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.