Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

How to Build a Nanotube Computer

IBM creates a new way to make faster and smaller transistors.

The shrinking of silicon transistors powered the computer revolution, but that process can’t continue forever.

Researchers at IBM have assembled 10,000 carbon nanotube transistors on a silicon chip. With silicon transistors approaching fundamental limits to continued miniaturization, the IBM work points toward a possible new way of continuing to produce smaller, faster, more efficient computers.

This story is part of our March/April 2013 Issue
See the rest of the issue
Subscribe

Earlier work by IBM showed that nanotube transistors could run chips three times faster than silicon transistors while using only a third as much power. And at just two nanometers in diameter, the nanotubes—carbon molecules resembling rolled-up chicken wire—are so small that chip makers could theoretically cram far more transistors on a chip than is possible with silicon technology. But controlling the nanotubes’ placement in arrays numerous enough to be useful—ultimately, billions of transistors—is a major research challenge.

At IBM’s T.J. Watson Research Center in Yorktown Heights, New York, researchers are etching tiny trenches on silicon and using a multistep process to precisely align semiconducting nanotubes in them. Then they add metal contacts to test the nanotubes’ performance. The company hopes that since the process uses a silicon substrate, it can eventually be inserted as a few extra steps within existing fabrication plants.

In the samples the researchers have created so far, the nanotube transistors are about 150 nanometers apart. They’ll have to get closer if the new technology is to beat today’s silicon transistors and keep ahead of improved generations over the next decade. “We need to lay down a single layer of carbon nanotubes spaced a few nanometers apart,” says Supratik Guha, director of physical sciences at the lab. His group must also work out how to add individual electrical contacts, envisioned as atomic-scale vertical posts, to each of billions of transistors; right now the wafer acts as the gate switching the nanotubes on and off. And finally, they must find ways to generate ultrapure supplies of semiconducting carbon nanotubes so that few, if any, will fail or short out. While achieving all this is likely to take five to 10 years, Guha says, “nanotubes are an excellent candidate to keep the scaling of microelectronics technology going.”

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.