Sustainable Energy

Manipulating Light to Double Solar Power Output

An ARPA-E project will use advanced, nanostructured materials to make solar cells that convert far more of the energy in sunlight into electricity.

Increasing the amount of electricity a solar panel produces is one of the most effective ways to reduce the cost of solar power.

Most solar panels convert less than 20 percent of the energy in the sunlight that falls on them into electricity. A new $2.4 million project funded by the U.S. Advanced Research Projects Agency for Energy aims to greatly increase the amount of sunlight that becomes electricity. Its goal is a conversion efficiency of more than 50 percent, which would more than double the amount of power generated by a solar panel of a given size. This would cut the number of solar panels needed in half and potentially make solar power more competitive with fossil fuels.

In the new research effort, Harry Atwater, a professor of applied physics and materials science at Caltech, plans to use precisely structured materials to sort sunlight into eight to 10 different colors and direct those to solar cells with semiconductors that are matched perfectly to each color. As a result, more of the solar spectrum will be absorbed, and the energy contained in each slice of the spectrum will be converted mostly to electricity, rather than heat.

The general idea of sorting sunlight by color isn’t new. One approach involves growing multiple semiconductor materials in a stack—light moves through the stack until it’s absorbed by a semiconductor that can convert it efficiently. This approach has yielded commercial solar cells with efficiencies of over 43 percent. But the process for making such solar cells is expensive, and the power output of the device is limited by the worst-performing layer.

Others have tried sorting light into various colors using conventional lenses, mirrors, and filters, but the prototypes have been bulky and haven’t reached very high efficiencies, in part because of the imprecision of the optics—it’s proved difficult to direct exactly the right wavelengths of light to each solar cell. It’s also been difficult to split the light up into more than a couple of different colors in one device. 

In the last several years, however, scientists have gotten better at manipulating light at a very small scale, sorting it by color, trapping it, and guiding it from one spot to another using thin layers of material that incorporate tiny features that are often smaller than the wavelength of light.  Atwater plans to draw on these advances to manipulate light precisely and in a compact flat package that might not look that much different than a conventional solar panel. One layer would split light up, sort it by color, and then deliver it to a second layer that contains an array of solar cells matched to each color.

The challenge with this approach is that no one makes these precisely structured materials over the large areas and in the large volumes needed in the solar industry. But Atwater compares the device to a flat screen TV, which is itself a sophisticated device for manipulating light, with its millions of transistors for switching on and off different colored pixels.

“The first ones that came out were many thousands of dollars and had defects. Now you can get one for less than a hundred dollars that’s essentially perfect, and the costs are going down all the time,” he says. “Flat displays are an example of something that’s at the scale of a solar panel, but are incredibly complex optoelectronic circuits. What we’re proposing is primitive by that standard.” 

Atwater says the manufacturing tools needed to make his nanostructured materials are starting to come on the market. They’ll remain expensive, however, as long as production volumes are low. Researchers are also closing in on the ability to make thin wafers of various semiconductors and transfer them to a device like the one he’s envisioning.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.