Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Flipping on the Lights to Halt Seizures

Targeted light transmission to genetically altered brain cells stops seizures cold.

Targeting genetically modified brain cells with light could be a more accurate way to analyze and treat neurological disorders—although the approach also carries unknown risks.

Strobe lights can trigger epileptic seizures. Now imagine a light that stops a seizure a split second after it starts. 

By applying pulses of light to genetically altered nerve cells deep in rat brains, researchers at Stanford and Pierre and Marie Curie University in France have done just that. Their results, which showed for the first time how a part of the brain called the thalamus is involved with epileptic seizures, were published today in Nature Neuroscience.

The study could point toward new targets for epilepsy treatment, says Ed Boyden, associate professor and leader of the Synthetic Biology Group at MIT. Boyden was not involved in the work. Some ideas “might emerge immediately from knowing new targets to insert deep brain stimulation electrodes,” a type of device already used to help people with epilepsy, Boyden says.

The latest research looked at a kind of seizure that sometimes follows damage to the cerebral cortex, the outer part of the brain, from strokes or head injuries. Previous reports had hinted that the cortex might also communicate during a seizure with the thalamus, the brain’s message relay center.

In the current study, experiments with rats confirmed that the thalamus propagates seizure activity originating in the cortex. To see if the thalamus could be a target for treating seizures, Jeanne Paz, the paper’s lead author, and her colleagues turned to optogenetics, a technology that lets researchers use light to turn brain cells on and off.

For the “genetics” part, they used a virus to insert the DNA code for a light-sensitive protein into thalamus cells of rats. When exposed to light, the protein interferes with these cells’ ability to communicate.

The researchers then developed a light source that would turn on only when a rat had a seizure. To detect seizures, they implanted electrodes into the rats’ brains. When these electrodes registered a seizure starting, light from a laser was aimed directly at the genetically altered thalamus cells. The result, the researchers found, was that flipping on the light immediately stopped the seizure activity, proving that the thalamus is needed to keep seizures going.

“We’re excited that just a brief light exposure was enough to stop the seizure,” says John Huguenard, Stanford professor of neurology and neurological sciences and an author of the study.

However, Huguenard says, an optogenetics-based brain implant to control seizures is a long way off because of the unknown risks of altering a person’s DNA with a virus. “I would want to be cautious,” he says.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.