Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Brain Implant Detects, Responds to Epilepsy

Medtronic’s device can sense changes in brain activity related to disease.

Next year, medical researchers will test in patients a one-of-a-kind brain implant that can sense electrical activity in the brain while simultaneously emitting electric pulses, says device developer Medtronic.

Deep-brain stimulators are mainly used to regulate the movement problems associated with Parkinson’s and other diseases, but they are also used in Europe and Canada to treat epilepsy and are being used experimentally to treat severe depression and obsessive-compulsive disorder. But doctors must use trial and error to determine the best parameters for the electrical stimulation programmed into each patient’s chip.

The smarter brain stimulator is an improved version of Medtronic’s existing deep-brain stimulator device, which has already been implanted in more than 80,000 people around the world. Medtronic has added an extra chip so that it can detect electrical activity and respond automatically to changes in the brain.

“If you are in the brain already, you might as well take advantage of the fact that you can listen in,” says Lothar Krinke, who manages the Deep Brain Stimulation division at Medtronic. This means the device could respond automatically when a patient’s symptoms grow stronger, or could turn itself off when the patient is asleep. “We really only want to deliver the electricity when it is needed,” says Krinke. The company has tested the device in lab animals and says that next year outside teams of researchers will test it in patients with diseases such as Parkinson’s and epilepsy.

Although invasive, these sorts of neural implants are vital for patients who otherwise fail to respond to medication, says Dwayne Godwin, a neuroscientist who studies epilepsy at Wake Forest School of Medicine. “Not every patient responds in the same way to treatment,” he says. “As these devices become better established, we will get a better understanding of which are better for certain types of disorders.”

Other brain implants have the ability to sense electrical activity and stimulate the brain, just not at the same time. For example, NeuroPace, a medical-device startup in Mountain View, California, has developed a brain implant that spends most of its time monitoring the brain for an oncoming seizure (see “Zapping Seizures Away”). When an impending seizure is detected, the device, which is currently in clinical trials, delivers imperceptible pacemaker-like shocks that prevent the disruptive activity from spreading and causing a seizure.

A system that can sense and stimulate at the same time could be useful in patients whose disease symptoms fluctuate over time, as is often the case in Parkinson’s patients, says NeuroPace CEO Frank Fischer. “I think it’s a very interesting research tool to be able to look at applications such as movement disorders, where changes may be naturally occurring and a patient could benefit from different levels of stimulation,” he says.

Krinke says adding sensing capability to the deep-brain stimulator could also help determine whether the implant is still functioning properly when a patient’s symptoms worsen, which could either be due to progression of disease or device failure. “The device can self-diagnose whether it is broken,” says Krinke.

Knowing whether a patient’s disease is worsening is more of a challenge, he says, but as researchers continue to use the device to study brain circuits relevant to disease states, eventually the device might become a diagnostic tool. “The future is that we can measure electrical signals that are related to disease progression,” he says.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.