Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Susan Young Rojahn

A View from Susan Young Rojahn

Paralyzed Rats Walk Again After Stem Cell Transplant

The rodent recovery spurs hope that humans could one day benefit from similar treatments.

  • September 13, 2012

Rats once paralyzed from complete surgical cuts through their spinal cords can walk again after stem cells were transplanted into the site of the injury, report researchers today in the journal Cell. The results suggest that stem cells might work as a treatment for patients even if they have completely severed cords, a potential therapy that has been viewed skeptically by many in the field.

Neural stem cells, derived from aborted fetal spinal cord tissue, were implanted onto each side of the spinal cord injury in the rats along with a supportive matrix and molecular growth factors. The human stem cells grew into the site of injury and extended delicate cellular projections called axons into the rats spinal cord, despite the known growth-inhibiting environment of the injured spinal cord. The rats’ own neurons sent axons into the transplanted material and the rats were able to move all joints of their hind legs.

The cells are produced by a Rockville, Maryland company called Neuralstem. The same cells are also being tested in ALS patients (see “New Cells for ALS Patients”) where they have shown some promise of stabilizing the progressive disease. Last month, the company announced that it has asked to FDA to approve a trial to test the cells in spinal cord-injured patients. 

Researchers are currently testing neural stem cells from a Newark, California-based company called StemCells Inc, in spinal cord injured patients; two of the three patients have reported the recover of some sensation (see “Human Stem Cells Found to Restore Memory” for an overview of the company).

Keep up with the latest in stem cells at EmTech MIT.
Discover where tech, business, and culture converge.

September 17-19, 2019
MIT Media Lab

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.