Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

First Logic Gate Made From Undoped Silicon Nanowires

Physicists have found a way to make diodes, transistors and logic gates from pure silicon nanowires, without the need for dopants

  • August 9, 2012

Silicon nanowires are one of the great hopes for electronic devices of the future. Unlike features carved using photolithography, nanowires are easy to make on a nanometre scale. Electronic engineers hope to use them for everything from optoelectronics to biochemical sensing.

But there’s a problem because at the nanometre scale, the electronic properties of silicon can depend on the precise location of only a few dopants. That’s difficult to control and causes wide variation in device performance.

Consequently, nobody has been able to make reliable diodes, transistors or logic gates out of silicon nanowires.

Today, Massimo Mongillo et amis at the Universite Joseph Fourier, Grenoble, in France demonstrate a way out of this conundrum. These guys show how to fabricate diodes and transistors from undoped silicon nanowires and how how such devices can be wired together to make logic gates.

Making electronic devices from undoped silicon has always been tricky because of a phenomenon known as a Schottky barrier which occurs at the junction between a metal and a semiconductor. The electrons in the metal tend to push away the electrons in the semiconductor allowing current to flow in one direction but not the other.

That sounds useful and indeed it is in certain circumstances when it can be used as a diode. The problem occurs when rectification is not required and the junction must work in both directions. The Schottky barrier prevents this.

Mongillo  and co have got around this problem by carefully coating the nanowire with metal silicides at the junction with a metal contact which prevents the formation of unwanted  Schottky barriers.

As a result, they’ve created a device that they operate as a bipolar transistor, a Schottky diode and a p-n diode. The gain on their transistor is significantly more than 1 meaning that the output from one can be used as the input of another without additional signal restoration. Finally they link a couple of these devices together with external leads to create a NAND logic gate.

They point out that it ought to be possible to make a logic gate from a single nanowire using a different arrangement of contacts, although it is not clear how scalable this approach would be.

Impressive nevertheless. 

Ref: arxiv.org/abs/1208.1465: Multifunctional Devices and Logic Gates With Undoped Silicon Nanowires

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.