Tiny Attackers

Antibiotic nanoparticles could target drug-resistant bacteria

Over the past several decades, bacteria have become increasingly resistant to available drugs. One strategy that might combat such resistance would be to overwhelm bacterial defenses by using highly targeted nanoparticles to deliver large doses of existing antibiotics.

In a step toward that goal, researchers at the Institute and Brigham and Women’s Hospital have developed a nanoparticle designed to evade the immune system and home in on infection sites to unleash a focused antibiotic attack.

This approach would mitigate the side effects of some antibiotics and protect the beneficial bacteria that normally live inside our bodies, says Aleks Radovic-Moreno, an MIT graduate student and lead author of a recent paper describing the particles in the journal ACS Nano.

The team, led by Institute Professor Robert Langer of MIT and Omid Farokzhad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women’s, created the new nanoparticles from a polymer capped with polyethylene glycol (PEG). PEG is commonly used for drug delivery because it is nontoxic and can help nanoparticles evade detection by the immune system to travel through the bloodstream. 

Their next step was to induce the particles to target bacteria. Researchers have previously tried giving drug-containing particles a positive charge, which attracts them to bacteria’s negatively charged cell walls. However, the immune system tends to clear positively charged nanoparticles from the body before they can encounter bacteria.

To overcome this obstacle, the MIT and Brigham and Women’s team designed nanoparticles that can switch their charge depending on their environment. While they circulate in the bloodstream, the particles have a slight negative charge. But when they encounter an infection site, which tends to be slightly acidic, they gain a positive charge, allowing them to bind tightly to bacteria and release their drug payload. 

These particles were designed to deliver vancomycin, a common treatment for drug-resistant infections, but they could be modified to deliver other antibiotics or combinations of drugs. 

Although further development is needed, the researchers hope the high doses delivered by their particles could eventually help overcome bacterial resistance. “When bacteria are drug resistant, it doesn’t mean they stop responding,” Radovic-Moreno says. “It means they respond, but only at higher concentrations. And the reason you can’t achieve these concentrations clinically is because antibiotics are sometimes toxic, or they don’t stay at that site of infection long enough.” 

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.