Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Tiny Attackers

Antibiotic nanoparticles could target drug-resistant bacteria

Over the past several decades, bacteria have become increasingly resistant to available drugs. One strategy that might combat such resistance would be to overwhelm bacterial defenses by using highly targeted nanoparticles to deliver large doses of existing antibiotics.

In a step toward that goal, researchers at the Institute and Brigham and Women’s Hospital have developed a nanoparticle designed to evade the immune system and home in on infection sites to unleash a focused antibiotic attack.

This approach would mitigate the side effects of some antibiotics and protect the beneficial bacteria that normally live inside our bodies, says Aleks Radovic-Moreno, an MIT graduate student and lead author of a recent paper describing the particles in the journal ACS Nano.

This story is part of the September/October 2012 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

The team, led by Institute Professor Robert Langer of MIT and Omid Farokzhad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women’s, created the new nanoparticles from a polymer capped with polyethylene glycol (PEG). PEG is commonly used for drug delivery because it is nontoxic and can help nanoparticles evade detection by the immune system to travel through the bloodstream. 

Their next step was to induce the particles to target bacteria. Researchers have previously tried giving drug-containing particles a positive charge, which attracts them to bacteria’s negatively charged cell walls. However, the immune system tends to clear positively charged nanoparticles from the body before they can encounter bacteria.

To overcome this obstacle, the MIT and Brigham and Women’s team designed nanoparticles that can switch their charge depending on their environment. While they circulate in the bloodstream, the particles have a slight negative charge. But when they encounter an infection site, which tends to be slightly acidic, they gain a positive charge, allowing them to bind tightly to bacteria and release their drug payload. 

These particles were designed to deliver vancomycin, a common treatment for drug-resistant infections, but they could be modified to deliver other antibiotics or combinations of drugs. 

Although further development is needed, the researchers hope the high doses delivered by their particles could eventually help overcome bacterial resistance. “When bacteria are drug resistant, it doesn’t mean they stop responding,” Radovic-Moreno says. “It means they respond, but only at higher concentrations. And the reason you can’t achieve these concentrations clinically is because antibiotics are sometimes toxic, or they don’t stay at that site of infection long enough.” 

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Next in MIT News
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.