We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Wild Types, Ferrofluids, and Robots

The challenges—and joys—of helping scientists and engineers explain their work

  • by Jane Kokernak
  • August 21, 2012
  • Feedback: Jane Kokernak weighs in on a 2.009 project.

I’m meeting with Hisham, a junior mechanical-engineering major working on a flexible joint for a snake-like robot. My job is to help him with the paper he’s writing about it. The robot, he tells me, will be used in municipal water pipes to monitor pipe stability and check for cracks, corrosion, and other problems; it will operate autonomously, in water, and in a complex network of pathways. That means the joint must be robust, waterproof, and bendable. I get that. But I admit that I’m baffled by something called the transfer function in the algorithm that determines the joint’s behavior.  

Unexpectedly, Hisham asks: “Is your job as a communications instructor especially challenging because you’re not a scientist?”

Ah, the million-dollar question.

This story is part of the September/October 2012 Issue of the MIT News magazine
See the rest of the issue

As one of more than 30 lecturers in MIT’s Writing Across the Curriculum program, I work with undergraduates as they write papers and create presentations for their science and engineering classes. I serve as instructor, giving lectures and leading discussions on communication principles and strategies, and coach, working closely with students as they develop their abilities to effectively share ideas, research, and designs. 

While Hisham is right to wonder whether comprehending all the science that goes on at MIT can be challenging for a humanities person, that challenge is also a source of intellectual adventure. Every day, I learn not only from the technical lectures and labs I attend in the classes I work with but also from students, who are typically generous and enthusiastic about explaining their research.

From one team of students in 10.26/27/29, the chemical-engineering projects lab, I came to understand the pathology of Alzheimer’s disease; from another team, the metabolism of Jurkat leukemia. Will, a student in 2.671, the mechanical-engineering measurement and instrumentation course, introduced me to ferrofluids, magnetic nanoparticle suspensions that deform in a magnetic field. When he presented his research at a poster session, he brought a sample in a beaker. I couldn’t resist touching the delicate corrugated bump that rose from the surface of the fluid when a magnet was applied to the underside of the beaker. A stain lingered on the tip of my finger for days.

I encountered the term “wild type” in my first semester as an instructor at MIT, in 7.02 (Introduction to Experimental Biology and Communication). To my mind, it seemed a great name for a dance. Not afraid to admit to what I don’t know, I asked the class of 15 students, “What’s the wild type?” They looked hesitantly around the table at each other, as though to signal Is she for real? Finally one student responded, “It’s the state of the organism as it exists in nature. Not mutated in the lab.” Her answer made me laugh out loud at my own naïveté, and the students laughed too. By now, I can list the procedures for an experiment on Pfu DNA polymerase almost by heart, but when I see the term “wild type” in a report, I still picture a single cell shimmying to music only it senses.

Even though I’m learning as I go, I help students become better communicators by thinking of myself as a proxy for the intended audience. I stand in for technical faculty (who will ultimately review the students’ work), scientific journal editors, professional mentors, and even the general public—whomever the students imagine reaching with their reports and talks. 

Of course, I teach overtly, too. One chemical-­engineering senior had trouble understanding and synthesizing in his writing some journal articles about computational models for investigating biological systems. Although I couldn’t write on that topic, I could still incrementally lead him to new insight without offering “the answer.” By framing questions, tracing logic (or obstacles to it) through a draft, identifying textual sources of confusion, and seeing the relationship between details and the whole, I am able to guide students into becoming the authority on—and ultimately the teacher of—their own work. 

On my best days I feel like a midwife, helping to bring knowledge into the world. To answer Hisham’s question, I tell him that I persistently try to understand complex technologies, with the help of students. By drawing a diagram and explaining the transfer function, for example, he teaches me about the robot’s movement. 

This work of teaching communications at MIT is ultimately a collaboration—a dance of sorts—in which teacher becomes learner, and learner becomes teacher.

Jane Kokernak has been an instructor in MIT’s Writing Across the Curriculum program since 2008.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.