Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

Will Carbon Capture Be Ready on Time?

High cost and uncertainties over its risks have raised doubts about whether the technology can help address climate change.

  • by Mike Orcutt
  • June 29, 2012
  • Trapped gas: Wells in the foreground monitor carbon storage at an enhanced oil recovery operation near Cranfield, Mississippi. In the background (red) is an injection well.

Many long-term strategies for combating climate change count heavily on the ability to capture huge amounts of carbon dioxide from the burning of fossil fuels and store it permanently in deep underground rock formations. But high costs and lingering technical uncertainties mean the technology, so-called carbon capture and storage (CCS), might not be able to play a significant role in cutting carbon emissions.

A recent report from the International Energy Agency warns that the development and deployment of CCS is “seriously off pace” as a way to prevent the average global temperature from rising more than 2 °C—a widely used target in climate strategy. The window to begin applying CCS toward consequential emissions reduction is “shrinking fast,” says the agency, which has declared that CCS must supply over a fifth of the emissions reductions needed by 2050 to keep the temperature rise below 2 °C.

Today, there are eight large-scale (capturing, transporting, and injecting at least 400,000 metric tons annually) CCS projects in operation, according to the Global CCS Institute, none of which are at power plants. These projects, in all, bury nearly 20 million metric tons of carbon dioxide per year. By comparison, coal burning in the United States and China emits about 2.1 billion and 6.95 billion metric tons, respectively, each year.

To meet the 2 °C goal, says the IEA, a minimum of 110 additional projects at power plants and industrial facilities should be brought on line by 2020—enough to capture and store 269 million metric tons of carbon dioxide that year. Although 67 large-scale projects are in planning or construction phases, it can take more than a decade to build a new CCS project.

A big hindrance to CCS is its price tag. Chemically separating carbon dioxide from plant exhaust or natural gas streams is expensive. Before the gas can be buried, it must be compressed to a supercritical state and transported via pipeline to the injection site—two processes that are also expensive. Without incentives, CCS adds too much to the price of power production from existing plants to be cost-effective.

Information about the global storage capacity is limited, but a 2012 study by MIT researchers found that in the United States, underground rock formations called deep saline aquifers could hold at least a century’s worth of carbon dioxide emissions from the nation’s coal-fired power plants.

Many of the candidate reservoirs, however, are untested, and it’s not clear how they might respond to large volumes of injected carbon dioxide. “The problem in a lot of these places (within deep saline aquifers) is that the permeability is very low,” making it harder to get the fluid into the rock, says Mark Zoback, a professor of geophysics at Stanford University. Inserting fluid causes pressure changes that can induce seismicity, and “you can’t inject these super-large volumes without the potential for triggering earthquakes.” Even small quakes that might occur on faults “easily missed” during EPA-required site characterization studies could let the greenhouse gas escape, he says.

Earthquake risks do not entirely disqualify the technology, says Zoback. But they make it unlikely that CCS can “significantly” reduce greenhouse-gas emissions, he and Stanford hydrogeologist Steven Gorelick argue in a paper published last week.

Captured carbon dioxide is already widely used in a technique called enhanced oil recovery, in which the gas is pushed into an oil reservoir to chemically mobilize hard-to-get hydrocarbons, making them easier to pump out. The injected gas is then either trapped in the oil reservoir or is “produced” while extracting oil and re-injected. This technically qualifies as CCS.

John Litynski, the carbon storage technology manager for the National Energy Technology Laboratory’s office of coal and power, sees enhanced oil recovery as a way to kick-start the CCS industry, since the NETL estimates that around 20 billion metric tons of carbon dioxide could be economically stored this way. “You’ve got a market driver with the oil production and you’ve got really well understood reservoirs for storage,” he says. “It’s probably going to be the first mover.”

Hear more about climate change at EmTech MIT 2017.

Register now

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.