Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Camera Made from Many Produces Gigapixel Images

A research project shows how a revolutionary type of camera could be commercialized.

  • by Duncan Graham-Rowe
  • June 20, 2012
  • Beady eye: The Aware-2 gigapixel camera with some of its many micro-cameras.

Imagine trying to spot an individual pixel in an image displayed across 1,000 high-definition TV screens. That’s the kind of resolution a new kind of “compact” gigapixel camera is capable of producing.

Developed by David Brady and colleagues at Duke University in Durham, North Carolina, the new camera is not the first to generate images with more than a billion pixels (or gigapixel resolution). But it is the first with the potential to be scaled down to portable dimensions. Gigapixel cameras could not only transform digital photography, says Brady, but they could revolutionize image surveillance and video broadcasting.

Until now, gigapixel images have been generated either by creating very large film negatives and then scanning them at extremely high resolutions or by taking lots of separate digital images and then stitching them together into a mosaic on a computer. While both approaches can produce stunningly detailed images, the use of film is slow, and setting up hundreds of separate digital cameras to capture an image simultaneously is normally less than practical.

It is not possible to simply scale up a normal digital camera by increasing the number of light sensors to a billion, because this would require a lens so large that imperfections on its surface would cause distortion.

Zoom in: A gigapixel image of Pungo Lake.

Brady’s solution, a camera called AWARE, has 98 micro-cameras similar to those found in smart phones, each with 10-megapixel resolution. By positioning these high quality micro-cameras behind a shared lens, it becomes possible to process different portions of the image separately and to correct for known distortions. “We realized we could turn this into a parallel-processing problem,” Brady says.

The corrections are made possible by eight graphical processing units working in parallel. Breaking the problem up this way allows more complex techniques to be used to correct for optical aberrations, says Illah Nourbakhsh a lead researcher of a similar project, called Gigapan, at Carnegie Mellon University.

Eventually, as computer processing power improves, the hardware needed for such a camera should shrink. Portable gigapixel resolution could be useful in a number of ways. For example, additional pixels already help with image stabilization. “Also, if you increase the resolution, you increase the chances of automated recognition and artificial intelligence systems being able to accurately recognize things in the world,” Nourbakhsh says.

The project is described in this week’s issue of the journal Nature. In one gigapixel image of Pungo Lake in the Pocosin Lakes National Wildlife Refuge, Brady’s group shows that individual swans in the extreme distance can be resolved. The picture was taken using a prototype camera capable of capturing and processing an entire image in just 18 seconds.

As graphical processors improve, so too will the speed of the camera, says Bradley. And although the prototype currently stands 75 centimeters tall–about the size of a television studio camera—the device’s size is dictated in large part by the equipment needed to cool the circuit boards.

“In the near term, we think this concept of a micro-camera imaging system is the future of cameras,” says Brady. By the end of next year, his group hopes to be able to produce and sell 100 units a year, each costing around $100,000. This is comparable to the cost of a broadcast TV camera, he says.

Gigapixel cameras could eventually allow events to be covered in new ways. “Rather than showing a camera angle that the producer lets you see, the viewer will be able to see anything in the scene that they want,” Brady says.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.