We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

Making Liquid Metal Batteries

Behind the scenes at a startup developing batteries for grid storage.

Liquid Metal Battery Corporation is developing cheap, high-power, and high-capacity batteries to smooth out fluctuations on the power grid. This could help prevent blackouts, and allow the use of more intermittent sources of electricity such as solar and wind power.


An early mock-up shows stacks of battery cells. A thick layer of foam insulation surrounds the heart of the battery. The colored pieces of material in the center represent the molten battery materials.


The company’s battery cells can be made with simple tools such as the bandsaw and drill press shown here. 


This is one of Liquid Metal’s first working cell designs. It is one inch in diameter. 


Liquid Metal has gradually scaled up its technology. Shown here are several cells, ranging from a one-inch-wide cell to the company’s largest, a 40-centimeter cell (the circular plate with three holes in it). Within each cell, two metals serve as electrode materials and one salt electrolyte. The metals are heated until they melt (hence the name Liquid Metal) and then naturally segregate, forming the three distinct layers needed for the battery to operate.


Most of the company’s tests are done on four-inch cells. One cell is shown here inside an insulated heater. The electrode and electrolyte in the cell are solid at room temperature, but need to be melted for the battery to operate. The cell is heated to 650 °C in this case, but the batteries typically operate at 500 °C. In a molten state, the conductivity of the electrode materials is very high, which allows the batteries to be charged, and to deliver power, rapidly. 


Liquid Metal tests its large, 40-centimeter batteries inside a steel metal drum. The charger is on the left, and a monitoring station is on the right. Although the sign says “hot,” the outside of the drum is cool enough to touch. 

The company’s headquarters, in the basement of an office building in Cambridge, Massachusetts, used to be occupied by a secretive military contractor. Now half of the space has the air of a startup—new furniture, bright walls, and a glass-enclosed conference room. The other half looks like a machine shop, where the researchers work to make the designs simple enough to be manufactured cheaply with standard equipment.     

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.