Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Oh, What a Toughened Web They Weave!

How spiders’ webs resist damage

The silk that spiders use to build their webs, trap their prey, and dangle from the ceiling is one of the strongest materials known. But it turns out it’s not just the material’s exceptional strength that makes spiderwebs so resilient.

Markus Buehler, an associate professor of civil and environmental engineering, previously analyzed the complex structure of spider silk, which gains strength from different kinds of molecular interactions at different scales. In a cover story this February in Nature, he now says a key property of the material that helps make webs robust is the way it can soften at first when pulled, then stiffen again as the force increases. Its tendency to soften under stress was previously considered a weakness.

Buehler and his team, including graduate students Steven Cranford and Anna ­Tarakanova, analyzed how materials with different properties, arranged in the same web pattern, respond to localized stresses. They found that materials with simpler responses—they behave as a linear spring when pulled, or start out stretchy and then become more plastic—perform much less effectively.

This story is part of the May/June 2012 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

Damage to spiderwebs tends to be localized, affecting just a few threads—the place where a bug got caught and flailed around, for example. This localized damage can simply be repaired, or just left alone if the web continues to function adequately. “Even if it has a lot of defects, the web actually still functions mechanically virtually the same way,” Buehler says.

To test the findings, he and his team literally went into the field, poking and pulling at spiderwebs. In all cases, damage was limited to the immediate area they disturbed.

This suggests that there could be important advantages to materials whose responses are complex and nonlinear. The principle of permitting localized damage so that an overall structure can survive, Buehler says, could end up guiding structural engineers. For example, earthquake-resistant buildings might flex up to a point, but if the shaking continued or intensified, specific structural elements could break first to contain the damage.

That principle might also be used in the design of networked systems: a computer experiencing a virus attack could shut down instantly, before its problems propagate. So the World Wide Web may someday grow more resilient thanks to lessons learned from the spidery construction that inspired its name.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.