Skip to Content

Sunlight Absorber

A nanoscale pattern could lead to more efficient solar cells
February 21, 2012

Source: “Broadband 
Polarization-Independent Resonant Light Absorption Using Ultrathin Plasmonic Superabsorbers”
Harry Atwater et al.
Nature
Communications 2: 517

Results: Thin films of silver ordinarily absorb only 5 percent of visible light. By applying a pattern of nanoscale shapes to such a surface, researchers increased absorption to 70 percent. The patterned film absorbs light from the entire visible spectrum and from almost any angle.

Why it matters: The advance could lead to solar cells that are far thinner and cheaper than conventional ones, because less semiconductor material would be needed to absorb sunlight. Researchers have known that nanoscale patterns can greatly enhance light absorption by gathering light waves the way antennas gather radio waves. But these patterns typically absorb only light of certain wavelengths, allowing most of the solar spectrum to escape. That makes them impractical for use in solar cells. The researchers have demonstrated that their patterns can be used to absorb a wide range of wavelengths, opening the door for their use in photovoltaic devices.

Methods: The researchers used lithography to carve patterns of tiny wedge shapes placed end to end. The narrow end of the wedges can absorb short wavelengths at the blue end of the spectrum, and the wider end absorbs longer-wavelength red light.

Next Steps: The researchers are working to apply the nanoscale design to materials used in solar cells. In recent, unpublished experiments, they showed that the patterns can allow thin films of silicon to absorb as much light as unpatterned silicon films 25 times as thick.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.