Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Graphene Competitor Used to Make Circuits

Molybdenite could have a crucial advantage over graphene for making smaller, faster electronics.

  • by Patrick Cain
  • January 30, 2012
  • New material on the block: Atom-thick sheets of molybdenite at the end of these gold leads act as transistors.

The first logic circuits made using atom-thick sheets of a material called molybdenite suggest a possible new solution to the problem of getting more power out of silicon computer components.

It also establishes molybdenite as a competitor to graphene, the atom-thick sheets of carbon believed capable of solving silicon’s shortcomings, and whose creators received a Nobel prize in 2010.

Silicon technology is in trouble because, for years, performance has been improved by shrinking the size of the features on silicon chips, but there is only so much more shrinking that can be done. Chips will go on sale this year with features as small as 22 nanometers, and at very small scales, silicon technology faces problems like oxidation, which reduces performance and causes energy losses.

Molybdenite, or MoS2, could allow electronics to get smaller still without such problems, says Andras Kis, who led a team at the Swiss Federal Institute of Technology in Lausanne, Switzerland, to make the first integrated logic circuits, the basis of computer chips, using molybdenite sheets.

Sheets of the material 0.65 nanometers thick and roughly 10 microns across were pulled from crystals of naturally occurring molybdenite. The sheets were made into transistors by laying them onto a silicon wafer and adding gold electrical connections. The linked up transistors functioned as logic gates, the basis of digital computing components.

Researchers seeking alternatives to silicon have been working with graphene for years, making, for example, prototype transistors that operate at much higher speeds than silicon ones. However, molybdenite has a crucial advantage, says Kis. “The nice thing about our material is that sometimes it can conduct current, sometimes it doesn’t.”

To do the job of silicon in electronics, a material needs to be able to flip between conducting and nonconducting to signal digital 1s and 0s, something made possible by an electronic property known as a “band gap.” Molybdenite naturally has a band gap suitable for use in electronics, while graphene does not. Giving graphene a band gap involves complex techniques like layering sheets of the material, cooling it to low temperatures, or cutting it into very precise shapes.

“Everyone was saying ‘graphene, graphene, graphene,’ so we thought, let’s look at something slightly different,” Kis says. “There’s a lot more attention on MoS2 now.” Although his team used naturally occurring molybdenite, it can be easily made by reacting sulfur with the metal molybdenum, widely used in the steel industry.

James Hone at Columbia University studies graphene and also molybdenite. He says that the Swiss team did well to find a way to allow electrons to flow freely from gold electrodes into the molybdenite, since the two materials don’t naturally make a good connection. Kis’s team solved the problem by adding hafnium oxide “gates” that function as electrical on-ramps between the gold terminals and molybdenite.

The Swiss team has established a new performance benchmark for molybdenite, Hone says. “We’re starting to see that the fun is going to come with mixing and matching these 2-D materials on different substrates for different functionality,” he says. “A lot of people are interested now; progress is happening so fast.”

However, despite molybdenite looking like a promising avenue to explore, the multibillion-dollar silicon industry isn’t at risk of disappearing anytime soon, says Kis. “There are still many questions, like how to grow this on a large scale,” he says. “People really know everything there is to know [about silicon]. There’s a lot of exploring still to be done with molybdenite.”

AI is here.
Own what happens next at EmTech Digital 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.