Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Demonstration of Actuation-at-a-Distance Effect for Labs on a Chip

Microelectromechanical devices could soon be remotely controlled using light thanks to a proof-of-concept experiment demonstrating “photoelectrowetting.”

  • January 18, 2012

Moving water is fairly straightforward on the human scale: a pump or a bucket will usually do the trick. But in the last couple of decades, various teams have begun to study ways of moving liquids around on the much smaller scale of micrometres. 

Their goal is to create devices, such as a lab-on-a-chip, that can carry out self-contained chemical and biological tests on tiny samples. To that end, researchers have developed various new ways to move liquid around using exotic pumps relying on things like electric fields. So-called microfluidic devices are having a big impact in areas from pathogen identification to environmental monitoring   

Last year, Steve Arscott at the The University of Lille in France added another tool to this armoury. He showed that light could modify the wetting angle of a conducting droplet sitting on an insulated conductor. 

This system is essentially a capacitor: one conductor separated from another by an insulating layer. Physicists have known for some time that changing the voltage in such a capacitor sets up a force that alters the wetting angle of the droplet. This effect, known as electrowetting, is the basis for various kinds of electric pumps.

Photoelectrowetting works in a similar way, says Arscott. With a voltage across the capacitor, the incident light generates charge pairs within the droplet that influence the electric field in the capacitor and this changes the wetting angle. 

That was an interesting advance because it raised the prospect of pumping small volumes of water using light and very little power (since there is almost no flow of current). 

Today, he and his pal Matthieu Gaude put the photoelectrowetting effect into action. These guys have made a cantilever sitting above an insulated conductor and placed a droplet of water between them so that it fills the gap by capillary action (see above).

Zapping this system with light changes the wetting angle the droplet makes with the cantilever and the electrode below. This makes the droplet thinner, pulling the cantilever down. 

The ability to actuate at a distance using light alone could have many applications because it eliminates the need for the complex circuitry and pumps now used to transport droplets. It could also allow optical addressing of autonomous, wireless sensors.

Incidentally. that’s not unlike the light actuation of metamaterials we looked at yesterday. Perhaps there’s a new era of light actuation ahead. 

Ref: arxiv.org/abs/1201.2873: “Actuation At A Distance” Of Microelectromechanical Systems

Using Photoelectrowetting: Proof-Of-Concept 

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Listen in as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.