We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

World's Largest Quantum Computation Uses 84 Qubits

The most extensive quantum computation in history took just 270 milliseconds, say quantum physicists.

  • January 11, 2012

Quantum computers are in danger of losing their lustre. These machines exploit the strange rules of quantum mechanics to carry out calculations that are vastly more powerful than anything that conventional computers can do.

Or so we’re told. Quantum computers in one form or another have been carrying out calculations for more than a decade. But far from putting conventional computers to shame, these devices have yet to outperform the calculating abilities of a primary school child.

Ten years ago, physicists used a quantum computer to factorise the number 15 using seven quantum bits or qubits. The result received great acclaim. Last year, they beat this record by factorising the number 143 using four qubits. Hardly a meteoric improvement.

But this dismal state of affairs may be finally changing with the announcement today of a calculation involving 84 qubits carried out by Zhengbing Bian at D-Wave Systems, a quantum computer manufacturer based in Vancouver, Canada, and a few mates.

Their task was to calculate various so-called ‘two-colour Ramsey numbers’, exotic mathematical entities that are intimately connected with the emergence of order in disordered systems.

The famous example used to explain Ramsey numbers is the party problem which can be stated like this: how many people do you need to invite to a party to ensure that a subset of them, denoted ‘m’, will know each other and another subset of them, denoted ‘n’, will not know each other and so be forced to mingle. The required number, R(m,n), is a two colour Ramsey number.

These numbers are notoriously difficult to calculate. The mathematician Paul Erdos once said that if an alien species threatened to destroy the human race unless we could tell them the R(5,5) Ramsey number, our best bet would be to put humankind’s best minds to work on the problem, since we should have a chance of getting it.

But if the aliens asked for R(6,6), our best bet would be to launch an immediate all-out strike against the aliens since the calculation would be too difficult to contemplate.

The task is essentially a counting problem. The guests at the party can be thought of as nodes on a graph and their connections (or the absence of them) as edges. Calculating Ramsey numbers is really a question of counting the permutation of connections for a given number of guests.

But even for a small number of guests the permutations can be nhuge. For example, R(5,5) is still unknown, even today, although mathematicians think it lies between 43 and 49.

With the threat of alien extermination ringing in their ears, Bian and co have calculated R(3,3) and R(m,2) where m = 4, 5, 6, 7 and 8.

Their quantum computer uses qubits in the form of superconducting circuits in which 1s and 0s correspond to the currents travelling in opposite directions and the laws of quantum mechanics allow both states to exist simultaneously. So a single circuit can represent both a 0 and 1 at the same time.

What’s useful in this calculation is that whenever a solution occurs, it is the result of increasing the number of guests by one. So in R(3,3), parties with 1, 2, 3, 4, and 5 guests produce a null result. However, the dynamics of the problem change dramatically when their are 6 guests and this is straightforward to spot with the appropriate quantum algorithm.

Bian and co say the calculation for R(8,2) used 84 qubits, of which 28 were used in the computation and the rest for error correction. It took just 270 milliseconds. The result is 8 (as has been known for many years by conventional methods).

That’s an impressive result. Bian and co say “The R(8, 2) computation…to the best of our knowledge is the largest experimental implementation of a scientifically meaningful quantum algorithm.”

It’s also a vindication of kind for D-Wave Systems, the company that built this computer and markets a 128-qubit computer for $10 million.

The company’s approach to computing, known as adiabatic quantum computing, has been heavily criticised. Various physicists have said that the theory behind the machine is flawed and that the company has shown little evidence of the kind of improvement expected over classical computers.

Nevertheless, various companies have partnered with D-Wave Systems to further develop the approach, including Google and Lockheed Martin.

So it’ll be interesting to see whether this result quells the storm or fuels it.

Ref: arxiv.org/abs/1201.1842: Experimental Determination Of Ramsey Numbers With Quantum Annealing

Correction: this post was edited on 11 January to correct a typo in the formula for the calculated Ramsey numbers. Thanks ryuuguu

AI is here.
Own what happens next at EmTech Digital 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.