Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Controlling Inflammation

Technique for curbing inflammatory cells could help ward off heart disease and cancer

Using short snippets of RNA to turn off a specific gene in certain immune cells, MIT researchers have shown that they can reduce the inflammation responsible for diseases such as atherosclerosis, other forms of heart disease, and some cancers.

Inflammation, one of the body’s defenses against disease and injury, helps wounds and infections heal, but too much inflammation can damage tissues. When fat and cholesterol build up on artery walls, for example, they produce inflammation that leads to atherosclerosis, a hardening of the arteries.

The MIT researchers’ technique for curbing inflammation relies on RNA interference, which disrupts the flow of genetic information from a cell’s nucleus to its protein-­building machinery. The key to successful RNA interference is finding a safe and effective way to deliver short strands of RNA that can bind with and destroy messenger RNA, which carries instructions from the nucleus.

This story is part of the January/February 2012 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

In a recent study published in Nature Biotechnology, the researchers delivered short strands of RNA that turn down the inflammation response by blocking activity of a specific gene in white blood cells called monocytes. Packaged in nanoparticles made from a layer of fatlike molecules called ­lipidoids, the RNA successfully reduced inflammation in mice, without side effects.

The RNA snippets targeted the gene for the CCR2 receptor, a protein on the surface of monocytes. Without this receptor, monocytes cannot receive the signals they need to travel to the injury site and cause inflammation. Mice treated with this type of RNA showed much lower levels of inflammation in atherosclerosis, cancer, and recovery from heart attack.

Study authors Daniel Anderson and ­Robert Langer, ScD ‘74, both faculty members in MIT’s David H. Koch Institute for Integrative Cancer Research, have developed similar nanoparticles to deliver RNA interference treatments for other diseases, including liver and ovarian cancers. “These kinds of approaches have a lot of potential for many different diseases,” Anderson says.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.