Skip to Content
Uncategorized

How Superconductors Can Detect Gravitational Waves

Superconducting metal bars could revolutionise the detection of gravitational waves, says physicists

Gravitational waves are vibrations in the fabric of spacetime. They are among the most exciting phenomena in the universe because they are generated by exotic processes such as collisions between black holes and even in the moment of creation itself, the Big Bang.

So finding a way to study them is a big deal for astronomers.

But there’s a problem. Gravitational waves squeeze and stretch space as they travel but their effects are tiny. Physicists calculate that the waves passing through Earth are changing the distance between London and New York by about the width of a uranium nucleus.

That makes them tough to spot, although he current generation of gravitational detectors ought to be able to detect this level of change (unless somebody’s got their numbers badly wrong).

Nevertheless, nobody has spotted a gravitational wave directly.

So a new way to find these beasts will surely be of interest. Today Armen Gulian at Chapman University in Maryland and a few pals outline a new type of detector that has the potential to be much smaller than today’s behemoths.

Conventional detectors are giant L-shaped interferometers with each arm being many hundreds of metres long. At the end of each arm is a mirror so a laser beam can bounce back and forth along the arms and then be made to interfere with itself.

Any change in the length of the arms ought to show up in any changes in the resultant interference pattern.

Gulian and co have a different idea. They imagine a bar of superconducting metal being hit by a gravitational wave. The waves act on all masses within the bar but the resulting movement of the metallic lattice, which is bound in place, will be very different from the movement of superconducting electrons, which are entirely unbound and free to move.

“Thus, the wave will tend to accelerate the electrons back and forth, towards and away from the ends of the bar,” they say.

Next, they place another superconducting bar at the end of the first but at right angles to it. While the first bar is squeezed by a gravitational wave, the second will be stretched. So the electrons in this bar will oscillate too, albeit shifted by half a period relative to the first.

Finally, if these bars are connected by a superconducting wire, an oscillating current should flow through it.

There are a few other subtleties to the design, largely to cope with the nature of superconductors, but this is essentially the principle they outline.

They go on to sketch the way a small such detector might work, made of bars just a few tens of centimetres long. A gravitational wave ought to generate a current of a few femtoamperes, a level that could be detectable with off-the shelf equipment.

Noise might be a problem, however. But Gulian and co say that if the frequency of the oscillations are known in advance much of the noise can be filtered out. In addition, the detector could be placed inside a magnetic bottle to screen out magnetic noise.

That’s an interesting idea which looks as if it could be considerably cheaper and simpler than the next generation of laser-based gear now being designed for future space missions such as LISA, (the laser interferometer space antenna). Worth looking at in more detail.

Ref: arxiv.org/abs/1111.2655: : Superconducting Antenna Concept for Gravitational Wave Radiation

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.