Sustainable Energy

Advanced Electrodes for Better Li-Ion Batteries

Nanotube anodes could lead to higher-energy, faster-charging batteries for cell phones and notebooks.

Lithium-ion batteries could last longer if their electrodes stored more charge. Korean researchers have now made a new type of anode that holds three times more charge than the conventional graphite anodes used in batteries.

Germanium Boost: Used in the anode of a lithium-ion battery, germanium nanotubes manufactured with a novel technique could increase the battery’s charge capacity and shorten recharge time.

The new anode is made of germanium nanotubes. It charges and discharges five times faster than previously reported silicon anodes, lasts through twice as many charging cycles, and is easier to fabricate. Its 400-cycle life matches that of graphite and is long enough for portable-electronics batteries, says Jaephil Cho, a researcher at South Korea’s Ulsan National Institute of Science and Technology, who led the new work. “These anodes meet the practical requirements of lithium-ion cells,” Cho says.

Cho collaborated with researchers at LG Chem, the Korean company that makes the lithium-ion batteries used in the Chevy Volt. Their results will soon be published online in the journal Angewandte Chemie. The researchers are also working on silicon nanotube anodes.

These advances are part of a broader push by LG Chem to develop better anode materials for higher-capacity batteries. “The company is looking for a breakthrough technology using both silicon and germanium materials for lithium-ion battery anodes,” Cho says.

Charging and discharging a lithium-ion battery involves moving lithium ions into and out of the anode. The more lithium the electrode can pack, the more energy the battery can store. Silicon and germanium can, in theory, hold about 10 and four times as much charge as the same amount of graphite by weight. So far, silicon has been the main contender for anodes because it’s cheaper, but crystalline silicon breaks down from repeated swelling and shrinking.

Nanostructured materials better withstand stresses from changes in volume, so researchers and a handful of startups are making anodes from silicon nanowires, nanotubes, and porous nanoparticles. Of these, nanotubes have the best charge capacity, Cho says.

The drawback to silicon nanotube anodes, though, has been their low cycle life: they typically maintain their capacity for just 200 cycles. Not only do germanium nanotubes last longer, but they also charge and discharge faster, because lithium ions diffuse through germanium more rapidly.

“Cycling life is one of the key parameters for making practical anodes,” says Stanford University materials science professor Yi Cui, whose startup Amprius is commercializing batteries with silicon nanowire anodes. “As an initial demonstration, this is very impressive,” Cui says. But, he cautions, germanium’s higher cost could be a limitation.

Cho believes that increased interest in germanium anodes could bring about a decrease in the material’s cost. “Germanium is an abundant element, and the current price is maintained by the lack of demand,” he says. “A hurdle for using germanium in real batteries is cost, but once big battery makers want to use it as an alternative candidate for [anodes], I believe its cost will drop.”

The researchers make the nanotubes by heating antimony-coated germanium nanowires at 700 °C for five hours. Germanium atoms diffuse outward and form hollow nanotubes with walls 40 nanometers thick. The process should be easy to scale up to large volumes and could be used for silicon as well, Cho says. What’s more, unlike methods commonly used to synthesize silicon and other nanotubes, this method has a high yield and produces uniform nanotubes.

Cho continues to collaborate with LG Chem and other Korean companies on porous silicon nanoparticle anodes. Meanwhile, Cui and others are exploring various new materials for cathodes, which now have much lower energy densities than anodes and can limit a battery’s overall charge capacity.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.