Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Rewriting Life

Nanofiber Regenerates Blood Vessels

A synthetic material may help to repair tissue after a heart attack, and aid transplants.

Regenerating blood vessels is important for combating the aftereffects of a heart attack or peripheral arterial disease, and for ensuring that transplanted organs receive a sufficient supply of blood. Now researchers at Northwestern University have created a nanomaterial that could help the body to grow new blood vessels.

Capillary action: The transparent circle in the center of this image is a nanomaterial designed to mimic the protein VEGF. Here, it has enhanced the growth of blood vessels in the membrane from a chicken egg after three days.

Samuel Stupp and his colleagues developed a liquid that, when injected into patients, forms a matrix of loosely tangled nanofibers. Each of these fibers is covered in microscopic protuberances that mimic vascular endothelial growth factor, or VEGF—a protein that occurs naturally in the body and causes chemical reactions that result in the growth of new blood vessels. By mimicking VEGF, the nanofiber has the same biological effect.

Jeff Karp, director of the Laboratory for Advanced Biomaterials and Stem-Cell-Based Therapeutics at Brigham & Women’s Hospital, says, “this is an elegant approach to rationally design engineered materials to stimulate specific biological pathways.” Karp was not involved with the project.

Ali Khademhosseini, an associate professor at the Harvard-MIT Division of Health Sciences and Technology, adds that “the ability to induce blood vessel formation is one of the major problems in tissue engineering.”

Tissue engineers have tried using VEGF itself to stimulate the growth of blood vessels, but clinical trials with the protein were unsuccessful, says Stupp, director of the Institute for BioNanotechnology in Medicine at Northwestern. This is because VEGF tends to diffuse out of the target tissue before it can do its job. Maintaining a therapeutic concentration in the target tissue would require a series of expensive, invasive injections.

The new nanomaterial has a similar effect, but it lasts much longer, and is completely biodegradable once its job is finished. Stem cells could be used to regenerate blood vessels, but their use is expensive and controversial.

The researchers tested their material in mice. The blood supply to the animals’ hind legs was restricted. Left untreated, these limbs would die. The nanofiber treatment rescued the limbs, and resulted in better motor function and blood circulation than the other treatments, including a treatment with VEGF.

Stupp says there could be more uses for nanofibers that mimic proteins from the body. For example, they could be used to stimulate the formation of connective tissues such as bone and cartilage, or to regenerate neurons in the brain.

“The next step is to proceed with extensive toxicological testing,” says Stupp. “The long view would be to produce a cell-free, growth-factor-free therapy for the treatment of ischemic disease and heart attacks.”

Khademhosseini also sees a lot of potential in nanomaterials that mimic natural proteins. “Such materials could have a great future application in regenerative medicine, as they will enable the body’s own regenerative response to heal,” he says.

AI and robotics are changing the future of work.  Are you ready?  Join us at EmTech Next 2019.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivered daily

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.