We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Business Report

Why Is Biomanufacturing So Hard?

Overhauling the manufacturing of biological drugs could make the process more reliable, improving access for patients.

Earlier this year, the Cambridge-based biotech firm Genzyme announced the latest in a series of manufacturing delays for Fabrazyme, a biological drug that treats a rare genetic disorder, after one lot of the drug was found to be contaminated. The news followed a more severe setback in 2009, when both Fabrazyme and another drug were contaminated with a virus; the problem closed the manufacturing plant and created major shortages.

MIT chemical engineer Chris Love aims to make production of biologic drugs more predictable.

Genzyme isn’t alone in these issues. Biologics—drugs made through a biological process rather than chemical synthesis, a category that includes recombinant proteins, vaccines, and antibodies—are the fastest-growing segment of the pharmaceutical industry. In 2008, nearly 30 percent of revenue from the top 100 drugs came from biologics, a figure that is expected to rise to 50 percent by 2014.

But the same factors that make biologics powerful drugs also make them a challenge to manufacture. They typically mimic proteins and other molecules found in living organisms and can target harmful entities, such as some cancer cells, with great accuracy; many of the most promising new drugs for cancer and other diseases fall into this class. Biologics tend to be larger, more complex molecules than drugs synthesized through chemical reactions, which adds to production challenges and makes them costly. A single dose of some biologic therapies can cost $10,000.

Biologics are most often produced by cells growing in a bioreactor, a vat designed to maintain carefully calibrated conditions. Because the cells are alive, “every time you run a reactor, the result can be a bit different,” says Chris Love, a chemical engineer who is part of MIT’s Biomanufacturing Research Program. This inherent variability makes the process both expensive and unpredictable.

Another issue is that for biologics to win approval from regulatory agencies, it’s not enough for the drug itself to be approved, as is the case with small-molecule drugs; the manufacturing procedure must be approved as well. While this is important for safety’s sake, it also makes it costly to change the production process after it’s been approved, and that discourages innovation. “By the time the drug is in the marketplace, you are working with old technology,” says Charles Cooney, a chemical engineer at MIT. “You have to lock in the technology many years before launch of a commercial product.”

And even when developing experimental drugs, makers tend to stick with methods that have previously been proved safe. As a result, new advances in systems biology and microtechnology have not been integrated into biomanufacturing, says Love.

Researchers use this microchip to search for cells that can produce proteins most prolifically.

He and other researchers hope to change that by making biomanufacturing more predictable. One of Love’s goals is to make sure the cells that produce these expensive drugs are as productive as possible, which should bring costs down. To do that, researchers take advantage of the natural differences in productivity among cells. They foster mutations to create genetic variability and then use microchips to analyze the behavior of individual cells, choosing the most prolific for larger-scale production.

A second major challenge in biomanufacturing is ensuring the quality of the drugs, which is complicated because protein-based drugs must fold into a three-dimensional shape and must have the appropriate chemical tags. And because these drugs are produced under conditions favorable to microbes, they can be infected with viruses. “Many mistakes are made because we don’t have the right analytics to measure the product or process,” says Cooney. “Manufacturing sits on a critical path between science and the patient and should be integrated into the continuum of drug development. I think most companies know they need to invest early on in manufacturing, but they don’t put enough effort into process development early on.”

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
Next in this Business Report
Advanced Manufacturing

In July, Business Impact will examine why advances in manufacturing are still critical to economic prosperity and the health of your business. During the month, we will explore the intimate—and often complex—connections between innovation and advanced manufacturing. Innovation is critical in both creating new manufacturing opportunities and in developing new tools, such as robotics and cloud computing, that can make manufacturing more efficient and productive.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.