Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

Spray-on Solar Goes Double-decker

Quantum-dot cells designed with two layers open potential for higher efficiencies.

A research team at the University of Toronto has created the first two-layer solar cell made up of light-absorbing nanoparticles called quantum dots. Quantum dots, which can be tuned to absorb different parts of the solar spectrum by varying their size, have been seen as a promising route to low-cost solar cells because the particles can be sprayed onto surfaces much like paint. But cells based on this technology have been too inefficient to be practical. By discovering a way to combine two different types of quantum dots in a solar cell, the researchers could open the way to making such cells much more efficient.

Solar dots: Each of these 16 dots is a solar cell made up of nanoscopic particles called quantum dots.

Conventional solar cells are tuned to convert light of only one wavelength into electricity; the rest of the solar spectrum either passes through or is converted inefficiently. To harness a greater percentage of the energy in sunlight, manufacturers sometimes stack materials designed to capture different parts of the spectrum. A two-layer cell, called a tandem-junction cell, can theoretically achieve 42 percent efficiency, compared with a maximum theoretical efficiency of 31 percent for cells with a single layer.

In the Toronto researchers’ cell, one layer of quantum dots is tuned to capture visible light and the other to capture infrared light. The researchers also found a way to reduce electrical resistance between the layers, a problem that can limit the power output of a two-layer cell. They introduced a transition layer, made up of four films of different metal oxides, that keeps resistance “nice and low,” says Ted Sargent, a professor of electrical and computing engineering who led the research at the University of Toronto. The researchers chose transparent oxides for this layer, allowing light to pass through them to the bottom cell.

The result, described this week in the journal Nature Photonics, is a tandem-junction cell that captures a wide range of the spectrum and has an efficiency of 4.2 percent. Sargent says that the approach can be used to make triple-layer and even quadruple-layer, which could be even better. The team’s goal is to exceed 10 percent efficiency within five years and keep improving from there. Conventional solar panels are around 15 percent efficient, but quantum-dot cells of somewhat less efficiency could still have an edge in terms of overall costs for solar power if they prove dramatically less expensive to manufacture.

John Asbury, a professor of chemistry at Penn State University, says that by opening up the ability to make multilayer cells from quantum dots, the U of T team has boosted the theoretical efficiency of the technology from 30 percent to almost 50 percent. But getting anywhere near those kinds of efficiencies will require a lot of work to eliminate “trapped states”—places within the quantum-dot material where electrons can become stuck. “The problem with quantum dots is that electrons have a high probability of not making it to the electrodes where they can be collected, so that has limited their efficiency,” he says. “To really have an impact means developing strategies to control those trapped states.”

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.