Skip to Content
Uncategorized

First Observation Of 8 Entangled Photons Smashes Entanglement Record

An 8-photon “Schrodinger’s Cat” is among the first of the new quantum objects that the breakthrough makes possible, say physicists

Entanglement is the strange quantum phenomenon in which objects become so closely linked that they share the same existence. In the language of physics, they are described by the same wavefunction.

Entangling things isn’t so difficult really. Most interactions involve entanglement of one sort or another.

The trouble is pinning it down. Entanglement is a fragile and fleeting phenomenon. Blink and it leaks into the environment. That’s why it’s so difficult to preserve, to observe and ultimately so difficult for physicists to play with.

In recent years, physicists have learnt how to entangle all kinds of objects in pairs–photons, electrons, atoms and so on. In 1999, they created a qutrit by entangling three photons. Last year, they even entangled 6 photons.

Today, however, Xing-Can Yao and buddies at the University of Science and Technology of China in Hefei, say they’ve smashed this record by entangling 8 photons, then manipulating and observing them all simultaneously.

That’s no easy feat. Getting eight photons exactly where you want them at the same time is the quantum mechanical equivalent of herding cats (clearly of the Schrodinger variety).

The trick is to first send a high energy photon through a nonlinear crystal that converts it into two entangled but lower energy photons. One of these, photon A, enters the experimental apparatus while the other is split again into two by another crystal.

This pair is, of course, entangled with photon A. One of this pair then enters the apparatus while the other is again split, creating yet another pair that are entangled with photon A. One of these enters the apparatus while the other is split and so on, until there are eight photons in the apparatus, all entangled with each other and photon A .

The trouble with this process is that it results in a very weak beam. With the kind of lasers available until recently, the best that could be managed was a count rate of about 10^-5 hertz. That’s one simultaneous strike of 8-photons every hundred thousand seconds or about one count a day. Even postdocs don’t have that kind of patience.

Xing-Can Yao and co say they’ve got around this using a much brighter ultraviolet laser source that produces entangled photon pairs at a much higher rate. Of course, they’ve also had to learn how to manipulate eight entangled photons too.

That’s significant. Having eight entangled photons is the closest physicists have come to having a Schrodinger’s cat in the lab. This “may provide new insights into our understanding of the intriguing questions of classical to quantum transition,” say Xing-Can Yao and co.

But it also allows a host of other quantum tricks too. For example, an 8-photon state should allow them to demonstrate a powerful way of correcting quantum errors called topological error correction. Many physicists think that topological error correction will be one of the enabling technologies of large scale quantum computing but nobody has been able to test it, until now.

And being able to manipulate an 8-photon state will allow them to simulate other quantum systems. That should make it possible to simulate for the first time various phenomena in quantum chemistry and even in biophysics.

And to do it using nothing but light (with a little smoke and mirrors thrown in).

Ref: arxiv.org/abs/1105.6318: Observation Of Eight-Photon Entanglement

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.