Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Contaminants Can Flow Up Waterfalls, Say Physicists

Physicists have discovered an entirely new process of upstream contamination–by studying the behaviour tea leaves

  • May 17, 2011

Here’s a curious phenomenon.

The south American drink ‘mate’ is a tea-like beverage in which finely cut, dried leaves from the yerba mate herb are infused in hot water. The dried leaves, just a few square mm in size, tend to float on the surface of the water

While pouring the hot water onto the leaves, Ernesto Althsuler and buddies at the University of Havana in Cuba, noticed a puzzling phenomenon. They found that, sometimes, the leaves would somehow travel upstream and end up contaminating the upstream container of pure water.

Being diligent physicists, they decided to investigate. They found that the leaves (and also chalk powder) were able to navigate upstream if the waterfall was less than about a centimetre in height. “For distances of the order of 1 cm or less, some of the floating particles eventually start to “climb up the stream”,” they say.

How can this be? Altshuler and co say the geometry of the system is important. Their set up consists of a relatively long horizontal channel, along which the water flows, followed by a short drop into the infusion (see diagram above).

In the past, physicists have observed vortices in horizontal flows which can set up a counterflow. When this happens, there is a main flow through the middle of the channel and a counterflow along the edges, which can carry small particles in the opposite direction.

What’s new, however, is the idea that the vortices can survive the drop and continue to generate a counterflow even after the water has plunged over the lip of the channel.

Altshuler and co think that this counterflow lifts particles out of the lower container and pumps them back into the upper container. But only if the drop is not too big–less than a centimetre or so.

That’s an interesting effect that you could probably recreate in your kitchen.

But it’s more than a mere curiosity. Altshjuler and co say their discovery “may have potential implications in many chemical, medical, pharmaceutical and industrial processes.”

So if you’re mixing processes are plagued by problems of contamination, perhaps the “mate” effect is to blame.

Ref: arxiv.org/abs/1105.2585: Upstream Contamination In Water Pouring

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

Want more award-winning journalism? Subscribe and become an Insider.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.