Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Physicists Build Single Atom Memory For Quantum Information

A single atom of rubidium sits at the heart of an exotic new quantum memory device.

  • March 10, 2011

One of the building blocks for the next generation of quantum computing and communications systems is a way of storing and regenerating photonic qubits. These are generally encoded in the polarisation of photons.

To date, physicists have done this by transferring the qubit from a photon to an ensemble of quantum particles such as a crystal lattice or a small cloud of atoms.

Today, Holger Specht and pals at the Max Planck Institute for Quantum Optics in Garching, Germany, have gone one better. They’ve found a way to store the qubit from a polarised photon in a single atom of rubidium and then release it again later.

The trick here is first to find an atom with the suitable two-level state that will absorb photons in the right way and second, to find a way to force the photon to give up its qubit to the atom.

It turns out that rubidium has the just right energy levels. Specht and co force the atom and photon to interact by trapping them in a high quality mirrored cavity in which the photon can enter but not easily escape. It then rebounds inside until it gives up its goods to the atom.

To accept the qubit, the atom first has to be placed in the right state by a weak laser beam. A second laser beam later forces the atom to spit out the qubit in the form of an identical polarised photon.

The result is a single atom memory that can read, store and write quantum information.

That’s a useful piece of kit. For example, such a device could form the basis of a quantum repeater, an enabling technology for a quantum internet that could be vastly more capable than the one we have today.

And although the device can store qubits for only 180 microseconds and has an overall efficiency of 9 per cent, Specht and co say they know how to make significant improvements, “with the prospect of storage times exceeding several seconds”.

This is a crowded field with many groups working on similar devices. It’s not clear whether the German team has the edge over its competitors but they’re certainly in the running.

Ref: arxiv.org/abs/1103.1528: A Single-Atom Quantum Memory

You can now follow The Physics arXiv Blog on Twitter

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.