We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Model of Chaos

Researchers develop a mathematical model that could help us make sense of how conflicts get messy.

It’s a familiar situation: A couple goes through a bitter breakup and their mutual friends have to choose sides. Sociologists have studied this type of situation, but in recent years, some researchers have looked at ways to model it mathematically.

That’s because such models could prove useful in many ways—from helping predict key players in a political or business conflict to refining the way online social networks display information.

In a paper published recently in the Proceedings of the National Academy of Sciences, researchers from Cornell University describe a model for predicting how a social group will break apart during a turbulent split. Jon Kleinberg, a professor of computer science at Cornell, who led the work, says researchers have traditionally focused on predicting how a group will look once the conflict has shaken out. He says this work proposes a way of looking at the process of the split itself.

Kleinberg notes that his group’s model doesn’t apply to every situation. Instead, it portrays extremely polarizing conflicts. A sociological theory called “structural balance” describes the decisions that group members are forced to make when a group splits completely apart. The model best fits ” situations where the logic starts to become, ‘If you’re not with me, you’re against me,’” Kleinberg says.

The researchers tested their model on data documenting the split of a university karate club, as well as to the division between the Axis and the Allies in World War II. They modeled the stages of the karate club’s split correctly, except for one error. For World War II, the model correctly predicted the side chosen by every country except Denmark and Portugal.

Kleinberg says the models have not been thoroughly tested on other situations, but it’s easy to watch a simulation and imagine the interpersonal relationships playing out. For example, in one model he ran, one side coalesced quickly, while the other group seemed to form only after each of its members was isolated from the first group.

Sidney Redner, a professor of physics at Boston University who has also worked on modeling how groups split apart, says the researchers’ work is very sophisticated, but there’s a long way to go before we have a clean understanding of the process. He adds that it’s notoriously hard to apply models like this to the real world. For example, he says, efforts to use theories like this to predict violence between Los Angeles street gangs have not been successful so far.

Others are even more skeptical. Stanley Wasserman, a professor of statistics, psychology, and sociology at Indiana University, says the model is too simplistic to lead to much insight about human behavior. He’s also skeptical about whether any model based purely on abstract mathematical principles—like this one—can accurately portray how people behave. He says predictive models built from experiential data are more reliable.

“The impact [of this work] depends on the general level of acceptance of math in the social sciences by sociologists,” says Krzysztof Kulakowski, a professor of physics and applied computer science at Akademia Gorniczo-Hutnicza University of Science and Technology. Kulakowski has also worked on the problem.

Kleinberg admits that it isn’t certain how mathematical models could prove practical. But he thinks the work suggests some interesting directions. For example, he notes that the new model could help identify key players in a worsening conflict. There were moments during the conflicts the researchers modeled when social subgroups floated between the two main rivals; certain people in these groups could be pivotal. A model like this might call attention to those people in a real conflict and give negotiators a chance to influence them.

Models like the one developed at Cornell could also help improve online social networks. Kleinberg notes that sometimes peoples’ positive or negative sentiments—when rating a product, for example—reflect their social connections rather than their genuine opinions. Social networks could use a model like this to catch this effect and test methods of filtering it out. Social networks might also use a model like this to be more sensitive after members of a group have fallen out with each other. In other words, they might finally know not to recommend that you become friends with your hostile ex-partner’s sister.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.