We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

The Year in Materials

Wonder material graphene wins Nobel Prize, flexible electronics head to market, and advances hint at the future of displays.

Graphene is a material of many superlatives. Notably, it’s the best conductor of electricity at room temperature and the strongest material ever tested. Now, just six years after their groundbreaking work, the two who performed the first experiments on the single-atom-thick carbon material (Graphene Wins Nobel Prize), Andre Geim and Konstantin Novoselov, both in the physics department at the University of Manchester, have received the 2010 Nobel Prize in Physics.

Speedy circuits: Researchers last summer made these flexible carbon nanotube circuits, which are the fastest low-power transistor arrays ever fabricated using a printer.

Perhaps one reason the prize was bestowed so soon after the work it recognizes is that materials scientists have already taken graphene from basic science experiments to prototypes of new devices. In one noteworthy example from this year, researchers at IBM made graphene transistor arrays that operate at 100 gigahertz—switching on and off 100 billion times each second, about 10 times as fast as the speediest silicon transistors (Graphene Transistors that Can Work at Blistering Speeds). Work at Samsung capitalized on graphene’s conductivity and flexibility to make flexible touch screens (Flexible Touch Screen Made with Printed Graphene).

Flexible Printed Electronics Advance

Other flexible materials for electronics also saw progress this year. Working with carbon nanotubes, researchers at Northwestern University and the University of Minnesota made the fastest printed electronics yet (Record Performance for Printed Electronics). Printed electronics holds out the promise of flexible devices that can be fabricated at high volume and low cost. Researchers at HP continued their work scaling up flexible display drivers made from thin films of silicon on rolls of plastic (Inexpensive, Unbreakable Displays and A Flexible Color Display). Meanwhile, groups at Stanford and the University of California, Berkeley, printed pressure sensors that match the sensitivity of human skin (Electric Skin that Rivals the Real Thing and Printing Electronic Skin).

And a startup in Cambridge, Massachusetts, took steps this year toward commercializing high-performance printed electronics. MC10 announced collaborations with Reebok and Diagnostics for All aimed at getting its stretchable arrays of integrated circuits, LEDs, and other silicon devices into products (Stretchable Silicon Could Make Sports Apparel Smarter and Cheap Electronics on Paper Diagnostic Chips).

MC10’s silicon-printing method, originally developed by John Rogers at the University of Illinois, works with a variety of substrates, including silk. Silicon-silk electronics—a facet of one of our Ten Emerging Technologies of 2010—should make possible smarter, more biocompatible medical implants (TR10: Implantable Electronics and Brain Interfaces Made of Silk). The implantable-electronics work uses silkworm silk as a tissue-friendly substrate. Spider silk is lightweight and tougher than steel, but materials scientists haven’t been able to get it in large enough quantities to realize its potential for industrial applications. Two 2010 advances in making transgenic silk-producing creatures, E. coli and silkworms, might change that (Making Spider Strength Materials and Transgenic Worms Make Tough Fibers).

Displays of the Future

While gadget hounds delighted in the new iPad, materials-science geeks lamented the continuing dominance of power-hungry liquid-crystal displays that useheavy pieces of glass. A lightweight wrist-mounted display prototyped for the U.S. Army employed new, more efficient organic light-emitting diodes (Thin Displays as Wristbands). And two companies making quantum dots partnered with display manufacturer LG to improve the efficiency of LCD backlights (Colorful Quantum-Dot Displays Coming to Market) and to make a new type of display, a quantum-dot light-emitting diode (Quantum Dot Displays Start to Shine).

New materials also pushed displays beyond conventional eye-strain-inducing 3-D that requires viewers to wear special glasses. Researchers at the University of Arizona and Nitto Denko Technical used a blend of electrically responsive light-scattering polymers to make a holographic videoconferencing system (A Step toward Holographic Videoconferencing). The holographic display refreshes every two seconds; with further improvements, it will attain video rates.

Rare Earths on the Radar

The year found many twisting their mouths around names like praseodymium and neodymium for the first time as the lanthanoid row of the periodic table came into the news. Many high-tech and clean-tech devices, such as lightweight permanent magnets for computer hard drives and wind turbines, require rare-earth metals, and demand for them is growing. China currently supplies 95 percent of the world’s rare earths, and some worry about future supplies of these critical raw materials. Companies including GE and Hitachi are working on alternative technologies that require smaller quantities of rare-earth elements or none at all (China’s Rare-Earth Monopoly). Meanwhile, the U.S. company Molycorp and the Australian company Lynas detailed plans for rare-earth mining operations in Mountain Pass, California, and Perth (Can the U.S. Rare-Earth Industry Rebound?).

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.