Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Christopher Mims

A View from Christopher Mims

AI Defeats the Hivemind

How a machine learning algorithm beat the assembled masses of Mechanical Turk.

  • December 20, 2010

Amazon’s Mechancial Turk is the ultimate in nearly anonymous outsourcing: any task that can be completed online can be accomplished by the combination of automated marketplace and human labor. Those who sign up to complete tasks - Turkers - are paid wages as low as pennies per chore to do everything from data entry to folk art.

(cc) Jim Linwood

Mechanical Turk is designed to complete tasks that are easy for humans and hard for machines, such as categorizing or identifying the content of images. The problem for Amazon and all its imitators, however, is that machines are getting better at many tasks, while the humans on Mechanical Turk, for reasons I’ll explore in tomorrow’s post, are getting worse.

Recently, for example, researchers working at the online review site Yelp released a paper (pdf) on their experience matching thousands of Mechanical Turkers against a supervised learning algorithm.

The results weren’t pretty: in order to find a population of Turkers whose work was passable, the researchers first used Mechanical Turk to administer a test to 4,660 applicants. It was a multiple choice test to determine whether or not a Turker could identify the correct category for a business (Restaurant, Shopping, etc.) and verify, via its official website or by phone, its correct phone number and address.

79 passed. This was an extremely basic multiple choice test. It makes one wonder how the other 4,581 were smart enough to operate a web browser in the first place.

These 79 “high quality” workers were then thrown at the problem of verifying business information three at a time. This allowed the researchers to take only the results that a simple majority of Turkers agreed were correct, or in some cases to take the result chosen by the Turker who had historically been the most accurate.

Researchers threw a “Naive Bayes classifier” at the same set of problems. This is a kind of supervised learning algorithm; one that, according to a 2006 comparison of these systems, isn’t even the best kind out there.

The Bayes classifier won handily.

In almost every case, the algorithm, which was trained on a pool of 12 million user-submitted Yelp reviews, correctly identified the category of a business a third more often than the humans. In the automotive category, the computer was twice as likely as the assembled masses to correctly identify a business.

These results don’t necessarily suggest that business categorization is a problem like chess, where the human computer has finally been exceeded by its mechanical counterpart. Rather, they suggest that something about Mechanical Turk itself is broken – either the incentive system or its mechanisms for policing quality. It’s long been known that the wages on Mechanical Turk are quite low - workers are making, on average, between two and three dollars an hour for their labors, and it’s likely that this is part of the problem. Economists have only just begun to address the question; more on that tomorrow.

Follow Mims on Twitter or contact him via email.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.