We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

A Boost for Battery Life and Capacity

Electric cars could benefit from a new manufacturing method.

A new chemical trick for making nanostructured materials could help increase the range and reliability of electric cars and lead to better batteries that could help stabilize the power grid.

Serving energy: When lithium-manganese phosphate is grown using a new process, it forms microscopic plates (shown here). These plates conduct both electrons and lithium ions, turning it into a useful material for storing electricity.

Researchers at the Pacific Northwest National Laboratory (PNNL) in Richland, WA, have developed the technique, which can turn a potential electrode material that cannot normally store electricity into one that stores more energy than similar battery materials already on the market.

This story is part of our September/October 2009 Issue
See the rest of the issue

In work published in the journal Nano Letters, the PNNL researchers show that paraffin wax and oleic acid encourages the growth of platelike nanostructures of lithium-manganese phosphate. These “nanoplates” are small and thin, allowing electrons and ions (atoms or molecules with a positive or negative charge) to move in and out of them easily. This turns the material–which ordinarily doesn’t work as a battery material because of its very poor conductivity–into one that stores large amounts of electricity.

When the researchers measured the performance of the material, they discovered that it could store 10 percent more energy than the theoretical maximum energy capacity of a comparable commercial electrode material–lithium-iron phosphate, which is used in power tools and some hybrid and electric vehicles.

The approach could open the door to using a wide range of candidate battery materials that are now limited by their ability to conduct electricity and lithium ions. Research in the area has reached the point at which most of the battery materials left to be studied have bad conductivity, says Daiwon Choi, an energy materials researcher at PNNL. The new method provides a simple way to increase their conductivity. He says the method could also be compatible with conventional battery-manufacturing techniques.

Both lithium-iron phosphate and lithium-manganese phosphate are attractive at battery electrodes because they have a stable atomic structure. This crystalline structure–called olivine–is far more stable than the crystal structure of electrode materials used in laptop and cell-phone batteries. As a result, olivine materials can last much longer than the three years that cell-phone battery materials typically last. Some manufacturers claim that lithium-iron phosphate batteries could last for over 30,000 complete charge and discharge cycles without losing much of their capacity to store energy–enough for the battery to last 50 years, Choi says.

In theory, lithium-manganese phosphate could last for a similar number of cycles, because it has a similar crystalline structure. But it has the added advantage of potentially being able to store 20 percent more energy than lithium-iron phosphate, since it operates at a higher voltage. However, it has been particularly hard to modify lithium-manganese phosphate to overcome the fact that it’s an electrical insulator.

Previous attempts have required processing precursor materials in a liquid solution before creating solid battery materials–a process that’s too expensive for commercial production. The new method developed at PNNL eliminates this separate liquid-processing step, simplifying the process and making it compatible with existing manufacturing techniques.

To prepare the material, the researchers mix chemical precursors with paraffin wax and oleic acid. The wax and acid work together to cause the precursor materials to form crystals of a well-controlled size and shape without clumping up. The wax liquefies at the high temperatures used to process the material and acts as a solvent that replaces the separate liquid processing step used in earlier research.

So far, the material can only be charged at low rates (although it delivers power fast enough for many applications). Choi says one of the next steps is to develop a better process for coating the nanoplates with carbon, which should improve conductivity.

Although lithium-manganese phosphate is attractive because it stores more energy than lithium-iron phosphate, both take up a relatively large amount of volume compared to other types of electrodes for lithium ion batteries. Jeff Dahn, professor of physics and chemistry at Dalhousie University, says this could ultimately make them more attractive for stationary applications–such as storing power on the electricity grid to help smooth out variability from renewable sources–than for electric vehicles.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.