Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

High-Performance Electronics without the High Price

A method for printing exotic semiconductors brings down the cost of high-performance solar cells and microchips.

Compared to silicon, semiconductors like gallium arsenide can be made into solar cells that convert more sunlight into electricity and transistors that are faster than their silicon counterparts. But devices made from these materials are expensive.

Power flex: This flexible gallium arsenide solar cell was assembled using a low-cost method for working with exotic semiconductors.

Now a new method for making large-area devices from gallium arsenide promises to bring down costs by eliminating manufacturing steps and wasting less materials. Researchers have used the method to make high-performance image sensors, transistors, and solar cells. Semprius, a Durham, NC, company, is using it to make solar modules that should be on the market by the end of the year.

This story is part of our May/June 2010 Issue
See the rest of the issue
Subscribe

Gallium arsenide solar cells convert twice as much of the energy in sunlight into electricity compared to silicon cells, says John Rogers, professor of materials science and engineering at the University of Illinois at Urbana-Champaign, who led the research. Gallium arsenide is also being eyed by microchip manufacturers such as Intel as a potential replacement for silicon.

The problem with gallium arsenide, however, is its price tag. To make a gallium arsenide solar panel today, manufacturers grow a semiconductor crystal on an expensive template in a high-vacuum, high-temperature chamber. The gallium arsenide is then diced into thin pieces, assembled, and bonded. This process destroys the underlying template, which is necessary to create a high-quality crystal. And making only a single layer of gallium arsenide at a time is inefficient–it takes more time to load and unload the vacuum chamber than it does to grow the crystal.

To address the problem, Rogers developed a method for growing multiple layers of devices at one time, and a way to release them from the substrate without destroying it. “Once the substrate is in the chamber at the right temperature, we grow a multilayer stack,” explains Rogers. The stack alternates a device layer with a sacrificial layer. After all the layers are put down, the stack is etched in a chemical bath that eats away at the sacrificial layer, made of aluminum arsenide, releasing thin rectangular films of gallium arsenide. As the gallium arsenide films are released, they’re picked up and placed on a substrate.

These films, which are thin and flexible, can be placed on flexible substrates such as plastic, and then packaged to create high-performance solar cells, image sensors, and transistor arrays. The method and the devices are described this week in the journal Nature.

“A lot of other low-cost approaches don’t produce high-performance devices, but in this case great performance is maintained,” says Yi Cui, professor of materials science and engineering at Stanford University. “And in the end it’s flexible, something you can’t get with conventional processing,” he adds. Rogers developed a similar method for making large area, flexible silicon electronics a few years ago, and adapted the chemistry to work with gallium arsenide. Cui says that the latest work shows that the method should work with any crystalline semiconducting materials, as long as the right chemistry can be found so that the etching step affects only the sacrificial layer.

The multilayer technique “is quite attractive since it makes the process highly scalable and potentially cost-effective, making the potential use of gallium arsenide for large-scale photovoltaics a reality,” says Ali Javey, professor of electrical engineering and computer science at the University of California, Berkeley.

Semprius is using the process to make multilayer, microscale concentrated solar modules with efficiencies as high as 37 percent. These modules should produce power at a cost of about $2 to $3 per watt after installation. Joe Carr, the company’s CEO, says Semprius’s pilot plant will be operational by the end of this year, at which time it will begin making its first products. The company has funding from the U.S. Department of Energy and a development agreement with Siemens.

Rogers says he pursued solar power as an initial application because photovoltaic sales are so cost-sensitive. His research group will continue to develop other devices, and it also plans to adapt the technique to other materials. He also hopes to adapt the method to gallium nitride, which works well in the visible spectrum and can be used to make solid-state lighting.

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.