Skip to Content

Power from Glucose

An implanted biofuel cell may someday power medical devices.

Scientists have implanted the first functional glucose biofuel cell in a living animal. Unlike batteries that supply power to implants, a power-generating device may not have to be surgically removed and replaced, because glucose is a potentially limitless source of energy.

Sweet power: Scientists implanted a glucose-powered device into the abdominal cavity of a rat and measured its performance for three months. The glucose device consists of electrodes made of compressed graphite discs containing enzymes that catalyze the oxidation of glucose. The electrodes sit inside a dialysis bag that keeps enzymes inside but lets glucose and oxygen flow through.

The device uses enzymes to harvest energy from glucose and oxygen found naturally in the body. Past attempts at using such a device in animals have failed because the enzymes have required acidic conditions or were inhibited by charged particles in the fluid surrounding cells. But Philippe Cinquin and his team from Joseph Fourier University in Grenoble, France, overcame these obstacles by confining selected enzymes inside graphite discs that were placed into dialysis bags. Glucose and oxygen flowed into the device, but enzymes stayed in place and catalyzed the oxidation of glucose to generate electrical energy.

The team surgically implanted the device in the abdominal cavity of two rats. The maximum power of the device was 6.5 microwatts, which approaches the 10 microwatts required by pacemakers. The power remained around two microwatts for 11 days in one rat, and the other rat showed byproducts of glucose oxidation in its urine for three months, indicating that the device lasts at least that long. “This is a big breakthrough for the field of implantable biofuel cells,” says Shelley Minteer, an electrochemist at Saint Louis University.

“It’s quite an interesting paper that demonstrates for the first time that one can generate electrical power from body fluids,” says Itamar Willner, a biomolecular chemist at the Hebrew University of Jerusalem.

The technology could be used for a range of applications, such as neural and bone-growth stimulators, drug delivery devices, insulin pumps, and biosensors, says Eileen Yu, a chemical engineer at Newcastle University. But whether enzymes remain stable for a long period of time is a concern, she says. And the efficiency of transfer of electrons between enzymes and electrodes should be improved, she says.

Cinquin believes his team can improve its efficiency. “I’m optimistic that we will get tens of milliwatts in future versions,” he says.

The authors would next like to test the device for longer periods of time in larger animals, improve its design, and incorporate biocompatible materials. “If industry finds a willingness to enter into the technological development of biofuel cells, I’m sure the use of biofuel cells to power medical implants will materialize in a very short period of time,” Willner says.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.