Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

How Sandstorms Generate Spectacular Lightning Displays

How can nonconducting sand particles transfer the huge amounts of charge needed to generate spectacular lightning displays? A new model finally explains this phenomenon.

  • March 30, 2010

One of the fascinating features of volcanic cloud plumes is the extraordinary displays of lightning they generate. Similar discharges occur in sandstorms and in the dust blown up by helicopters flying over deserts causing dangerous arcing. These lightning storms are as puzzling as they are spectacular.

There are two parts to the problem. First, particles of sand are more or less identical, in size shape and chemistry. How then do they transfer charge between them? Second, sand particles are insulators, not conductors, which makes it doubly strange that they can be involved in the transfer of such massive amounts of charge. What on Earth is going on?

Today, Thomas Pähtz at the Swiss Federal Institute of Technology in Zurich and a couple of buddies say they can explain the whole thing with a deceptively simple new model. What’s more, their model makes some straightforward predictions about the way sand particles transfer charge.

Here’s their idea. They begin by thinking of sand particles as identical dielectric spheres. In an electric field, dielectric particles become polarised, causing charge to gather on each side of the sand spheres. When two spheres touch, the charge redistributes across the boundary between them, creating a larger, doubly polarised particle. The key idea is what happens when this breaks into two again: each particle ends up with a net charge (see picture above). The process of polarisation then begins again allowing the particles to increase their charge even further with each collision. It’s not hard to see how a relatively small number of collisions could end up transferring huge amounts of charge in this way despite the absence of any kind of conducting medium.

This model makes some interesting predictions about the rate at which a cloud of sand should pump charge. For example, it predicts that shallow clouds of dust would end up being charged only weakly. This is what you might expect from weak winds or heavy grains. Similarly, very thick clouds should result only in weak charging. However, Pahtz and co says that in intermediate clouds, there should be dramatic charging. And sure enough, that’s exactly what they find, both in numerical simulations of dust clouds and in actual experiments they’ve performed with real sand.

“We find as predicted that shallow agitated beds - as could be expected in weak winds or for heavy grains - charge weakly, as do very deep agitated beds - as would be expected for highly dissipative materials. Under intermediate conditions, however, we observe dramatic charging, with the most highly charged particles found preferentially near the top of the agitated bed,” they say.

That’s an elegant idea that produces some fascinating results. But it leaves open one very important question. In real storms, what generates the electric field that polarises the sand particles in the first place? It looks like Pahtz and co will have interesting time ahead getting to the bottom of that one.

Ref: http://arxiv.org/abs/1003.5188 Why do Particle Clouds Generate Electric Charges?

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.