Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

The Time-Reversed Laser to See the Light

Rather than emitting light, a time-reversed laser absorbs it. Perfectly.

  • March 29, 2010

There’s no question that lasers are cool devices. They work because in certain materials, the passage of a photon past an atom can trigger the release of another photon which goes on to release more photons and so on. This chain reaction generates an exponential increase in the number of photons, a key characteristic of lasing materials.

In the past, physicists always though that the photons had to be confined to cavity so that they bounced back and forth many times, stimulating the release of more photons with each traverse. But even that isn’t necessary. In the last few years, various groups have shown that lasing can occur in random materials. That may seem even better but today lasers get an added boost of coolness thanks to some fascinating work by Yi Dong Chong and buddies at Yale University.

If the lasing process works in one direction, why can’t it work in the other, they ask. The answer, it turns out, is that it can. Chong and co today show how certain materials can work like time-reversed lasers, so that instead of emitting light, they absorb it at specific frequencies. What’s more, the absorption is perfect. Chong and co show in particular how this can be done with silicon, which is kind of useful for computing and communications. They say that the absorption can be thought of as an interference effect in which the reflected and transmitted parts of a coherent beam interfere perfectly. What happens to the energy that is absorbed?

Chong and co say that it is dissipated either as heat or as electron hole pairs but neglect to say how you can choose one outcome over the other, a potentially important point. Chong and co call their new devices coherent perfect absorbers or CPAs and a number of applications in communications spring to mind. They show that a single material can absorb perfectly at a number of different frequencies. However, they point out that if the material is bathed in broadband light, the effect averages out to the incoherent absorption level. That may place limits on how the idea can be applied to photovoltaics but these optics engineers are a clever bunch. They may well find a way to exploit it to harvest energy from the Sun.

Even so the ability to ensure perfect absorption of photon energies is a neat trick that is likely to find a number of applications elsewhere. Is it possible for lasers to get any cooler?

Ref: http://arxiv.org/abs/1003.4968: Coherent Perfect Absorbers: Time-reversed Lasers

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.