Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Black Holes Can Form Rings, Helices, and Even Saturn Shapes

String theory implies that black holes can come in all kinds of forms and flavors, according to a cosmologist who has catalogued all known types.

  • March 15, 2010

String theory is physicists’ best guess at a unified theory of all interactions but it comes with some strange predictions. One of these is that spacetime consists of 10 dimensions rather than just the four we’re familiar with. And that raises some interesting questions.

One of them is what shape singularities can form in this higher dimensional space. In four dimensions, the only solution is spherical and that’s the type of black hole cosmologists have imagined all over the universe.

But in higher dimensions, there are all kinds of other solutions. We’ve looked at the possibility of black rings but today Maria Rodriguez at the Max Planck Institute for Gravitational Physics in Golm, Germany, compiles a catalogue of all know species of black hole.

It turns out there’s a whole menagerie of other black hole solutions. Here are just a few: the black saturn, the black helical ring, the di-ring, the black bowtie, and the bicycling black ring as well as the more general blackfolds.

While these solutions may exist mathematically, they may or may not exist in the real universe. In fact, Rodriguez is able to work out certain criteria that a solution must meet for it to have a hope of existing in the real world. For example, a black ring can only exist if there is enough centrifugal repulsion to prevent it from collapsing.

Rodriquez points out that the list is incomplete. “The catalog of different species (exact solutions) of black holes shows a very rich structure but seems far from being complete.”

That makes it an interesting topic for ambitious cosmologists. But be warned: there’s a good reason the list is incomplete. The solutions in this higher dimensional space are fiendishly difficult to find.

Nevertheless, it would be good to either rule out the possibility of their existence or work out if and how they can be distinguished observationally from common or garden spherical black holes.

Ref: arxiv.org/abs/1003.2411: On the Black Holes Species (By Means Of Natural Selection)

AI is here.
Own what happens next at EmTech Digital 2019.

Register now
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.