We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Magnetic Solder to Wire 3-D Chips

The lead-free material may make it easier and cheaper to make “stacked” chips with more computing power.

A new type of solder can be melted and shaped in three dimensions under the force of a weak magnetic field. Using a magnet to pull the solder up through narrow holes makes it possible to create electrical connections between stacked silicon chips, for example. These three-dimensional chips pack more computing power in a given area, but making connections between them is expensive, a problem that the new solder might address. The solder also contains no lead, and it is stronger than other lead-free solders.

Magnetic material: A new lead-free magnetic solder climbs vertically toward a magnet.

“It’s like the liquid metal robot from Terminator 2: you can shape it and make it flow using a magnetic field,” says David Dunand, a professor of materials science and engineering at Northwestern University, who was not involved with the research.

The new solder was developed by researchers led by Ainissa Ramirez, professor of mechanical engineering at Yale University, who was named on Technology Review’s TR35 list of young innovators in 2003. The solder gains both its strength and magnetic properties from iron particles suspended in the mixture.

Part of the motivation for developing the solder, says Ramirez, is regulatory. Many countries, including Japan and the members of the European Union (although not the United States), have banned imported electronics that contain lead. However, the best alternatives to tin-lead solder aren’t nearly as strong, and they tend to have a much higher melting point. The heat needed to melt the solder can put delicate electronic structures on computer chips at risk. Other research groups have developed composite solders that incorporate oxide or metal particles for additional strength. “We decided to put in magnetic metal particles to not only increase strength but to also give new properties,” says Ramirez.

The result is a tin-silver alloy that contains a dispersion of iron particles tens of micrometers in diameter. When a magnetic field is applied to the solders, two things happen. First, the iron particles heat up, locally melting the solder. This localized heating, which works on the same principle as inductive stoves, remains completely contained, keeping the surrounding area cool. And second, the iron particles line up with the direction of the magnetic field, squeezing and pushing the liquid in that direction. This alignment is retained when the solder solidifies, and the well-ordered particles provide mechanical reinforcement that’s greater than that afforded by a regular dispersion of particles.

“It’s a big deal to be able to move a liquid like this,” says Dunand. “You would expect the particles to resurface, not to entrain the liquid with them.”

Ramirez believes the solder may provide a better way to make electrical connections between the layers in three-dimensional chips. Today, the interconnects between stacked chips are made by chemically drilling a hole through silicon and coating its sides with copper. The surface tension on the copper encourages solder to climb up through the hole, but the process has its limitations. “They hope that the solder will wick up the copper walls,” says Ramirez, but there are many opportunities for failure, and the copper coating process is expensive. In contrast, the magnetic solder can be pulled up through silicon by using a relatively weak magnet. “Our process is very cheap,” she says.

Ramirez says she’s been in conversation with interested chipmakers, and may commercialize the solder through Adhera Technologies, a startup based in New York.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.