Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Deriving the Properties of the Universe

The properties of the universe can be derived by thinking about the origin of complexity, says a new theory.

  • January 18, 2010

Physicists and cosmologists have long noted that the laws of physics seem remarkably well tuned to allow the existence of life, an idea known as the anthropic principle.

It is sometimes used to explain why the laws of physics are the way they are. Answer: because if they were different, we wouldn’t be here to see them.

To many people, that looks like a cop out. One problem is that this way of thinking is clearly biased towards a certain kind of carbon-based life that has evolved on a pale blue dot in an unremarkable corner of the cosmos. Surely there is a more objective way to explain the laws of physics.

Enter Raphael Bousso and Roni Harnik at the University of California, Berkeley and Stanford University respectively. They point out that the increase in entropy in any part of the Universe is a decent measure of the complexity that exists there. Perhaps the anthropic principle can be replaced with an entropic one?

Today, they outline their idea and it makes a fascinating read. By thinking about the way entropy increases, Bousso and Harnik derive the properties of an average Universe in which the complexity has risen to a level where observers would have evolved to witness it.

They make six predictions about such a Universe. They say “typical observers find themselves in a flat universe, at the onset of vacuum domination, surrounded by a recently produced bath of relativistic quanta.These quanta are neither very dilute nor condensed, and thus appear as a roughly thermal background.”

Sound familiar? It so happens that we live in a (seemingly) flat universe, not so long after it has become largely a vacuum and we’re bathed in photons that form a thermal background. That’s the cosmic infrared background that is emitted by galactic dust heated by starlight (this is different from the cosmic microwave background which has a different origin).

That’s a remarkably accurate set of predictions from a very general principle. The question, of course, is how far can you run with a theory like this.

It certainly has the feel of a powerful idea. But, just like the anthropic principle, it also has the scent of circular reasoning about it: the universe is the way it is because if it were different, the complexity necessary to observe it wouldn’t be here to see it.

That may not be so hard to stomach, given the power of the new idea. Even a hardened physicist would have to accept.that Bousso and Harnik have a remarkably elegant way of capturing the state of the universe.

Ref:arxiv.org/abs/1001.1155: The Entropic Landscape

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.