Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A View from Erika Jonietz

More Efficient UV Lasers

Engineers find a new way to make nitride semiconductors more efficient, opening the door to more effective UV lasers and LEDs.

  • January 4, 2010

Electrical engineers in Debdeep Jena’s lab at the University of Notre Dame have found a way to make two nitride semiconductors conduct electricity better, which may make them useful for building more effective ultraviolet (UV) lasers and light-emitting diodes (LEDs). These devices could enable a wide range of applications such as high-density optical data storage, water treatment, sterilization of medical equipment, UV-enabled security marks on credit cards and paper money, and biological imaging.

A prototype UV LED made using Jena’s technique for growing nitride semiconductors.
Credit: AAAS

Nitride semiconductors such as aluminum gallium nitride and gallium nitride have the widest spectral range of band gaps–the energy required to move electrons through the material–among all semiconductors, ranging from the infrared through the visible and into the deep UV range. This makes them excellent for use in short-wavelength lasers and in LEDs for solid-state lighting, but it also makes it hard for engineers to design energy-efficient devices.

Like all semiconductors, nitrides need to be “doped” with foreign materials to conduct electricity efficiently. This either provides the material with charge-carrying electrons, or electron vacancies–called holes–that allow electrons to move freely. But the energy barriers in gallium nitride (GaN), for instance, are so large that even devices made with magnesium (the most commonly used hole-dopant for GaN) don’t work well at room temperature, making them extremely inefficient.

In a paper published in the January 1, 2010, issue of Science, Jena and his colleagues describe growing graded layers of aluminum gallium nitride (doped with magnesium) on the nitride surface of gallium nitride crystals. This means that the proportion of aluminum to gallium in the top layer increased as its thickness grew. Experiments testing this material’s conductivity showed that making the semiconductor this way efficiently activated the magnesium doping atoms at room temperature.

Jena’s group also built prototype UV LEDs using both the graded aluminum gallium nitride (AlGaN) material and regular maginesium-doped GaN. The AlGaN LEDs were both more efficient and brighter than the GaN devices. Jena believes that this should make nitride semiconductors much more practical alternatives for any device requiring UV light.

Hear more about security at EmTech MIT 2017.

Register now

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.