Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Katherine Bourzac

A View from Katherine Bourzac

Energy-Dense Silicon Batteries Get $3M

Startup Amprius has recieved government funding to scale up production of advanced lithium-ion electrodes.

  • December 17, 2009

The National Institute of Standards and Technology has awarded $3 million in funding to start-up Amprius, which is developing silicon-nanowire battery anodes. The Menlo Park, CA company, spun out of Stanford University, will use the money to develop manufacturing processes. We’ve covered the Stanford research on silicon battery materials, and in November we wrote about the company’s launch. Here’s some more on the technology from that story:

Amprius’ lithium-ion anodes are made of silicon nanowires, which can store 10 times more charge than graphite, the material used for today’s lithium-ion battery anodes. According to the company, electric vehicles that run 200 miles between charges could go 380 miles on its batteries, and laptops that have four hours of run time could last for seven hours between charges.

[…]

When lithium-ion batteries are charged, lithium ions move from the cathode to the anode, while electrons flow in through an external electrical circuit; the process is reversed during discharge. Silicon has shown promise as an anode material because it can take up much more lithium than the carbon materials now used. Indeed, the theoretical maximum energy density of silicon is 10 times greater than carbon’s. But silicon is fragile and tends to swell and crack after just one charge cycle.

However, battery anodes made from silicon nanowires can be cycled over and over again without damage. This fall, Yi Cui, Amprius founder and assistant professor of materials science and engineering at Stanford, demonstrated nanostructured silicon anodes that meet silicon’s theoretical charge storage capacity without breaking. Mats of long, thin nanowires are pliable, which relieves the strain when the battery is charged and discharged. And collections of nanowires have a very high surface area, which means more sites for interacting with lithium.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivery each weekday to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.