Skip to Content
Uncategorized

Do Enzymes Have Built-In Cooling Systems?

The ability to refrigerate the active regions of an enzyme would be hugely advantageous. Now researchers have worked out how this cooling might work.

The study of how molecular machines assemble and maintain our bodies is one of the defining sciences of our generation. The more we learn about these machines, the more complex and capable they seem.

One feature common to all machines is that they work best within a certain temperature range. Many human-built machines have complex systems for maintaining their temperature. Similarly, many machines built by evolution have extremely efficient thermal management systems. Think big ears and sweat glands.

So it seems reasonable to assume that evolution might have found a way for molecular machines to manage their temperature.

Today, Hans Briegel at the University of Innsbruck in Austria and Sandu Popescu at the University of Bristol in the UK, put forward a fascinating suggestion for how such a thermal management system might work.

The machines they focus on are enzymes, machines which catalyse certain biochemical reactions.

Essentially, enzymes are molecular clamps. They grab hold of specific biomolecules and hold them still. This reduces the activation energy of whatever chemical process the biomolecules are involved in, thereby increasing the reaction rate.

But the performance of enzymes is extremely sensitive to temperature. The rate of the reactions they catalyse increases slowly with temperature until it reaches a maximum and then drops dramatically.

On a mechanical level, the extra heat increases the amount of vibration in the molecular structure of the machine. The specific problem for an enzyme is the vibrations in the set of “molecular jaws” it uses to grab hold of biomolecules (otherwise called the activation site).

As the temperature increases, the vibrations in these jaws increases until they are no longer able to grab the biomolecules they are designed to hold. That’s when the reaction rate drops dramatically.

Briegel and Popescu say that it would be hugely advantageous for an enzyme to be able to cool these jaws. And they map out one way this could be done, which they call conformational cooling.

The idea is that a small change in the enzyme’s shape stiffens the jaws temporarily. This has the effect of reducing the vibrations in the jaws and hence their temperature. When the cooled jaws relax, they are then able to grab hold of the relevant biomolecules again. At least until they heat up again.

(The key is that the jaws must relax faster than the rate at which they heat up, otherwise there’s no advantage.)

Of course, every refrigerator needs a source of power and Briegel and Popescu suggest that this could be provided by another molecule, such as ATP.

What’s neat about this suggestion is that a very simple experiment could easily test it. Simply measure the temperature dependency of the rate of enzymatic reaction with and without the presence of ATP.

If ATP is really providing the energy to cool the enzyme, then the two curves should be different.

That’s an experiment that an enterprising grad student could do tomorrow.

Let us know how you get on.

Ref: arxiv.org/abs/0912.2365: Intra-Molecular Refrigeration in Enzymes

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.