David Talbot

A View from David Talbot

Boeing's 787: In the Air at Last

The Dreamliner makes its first flight after two years of delays.

  • December 15, 2009

Today the Boeing 787 “Dreamliner”, said to be 20 percent more efficient, 60 percent quieter, and significantly cheaper to maintain, passed a huge milestone as it finally took off and landed.

Watching the televised takeoff of the 787–after two years of delays brought on by manufacturing errors and structural problems–brought back some memories. Six years ago I visited Boeing’s rain-drenched tarmacs and vast hangars in Everett, WA, to report a feature for Technology Review on the then-new project to build what was dubbed the “7E7” commercial jet.

The idea was to gain an edge on Airbus by offering a midsized super-fuel-efficient jet, with better jet engines, and reduced weight enabled by far wider use of composite structural materials as well as fewer bulky pneumatic control systems.

In 2003 Boeing engineers and executives spoke excitedly about how the 7E7 would take collaborative Internet-enabled design and widely distributed manufacturing processes to new heights. Designers around the world would collaborate on the same master file over the Internet. Then subcontractors around the country and world would get a copy of those files, whip together big chunks of the structure, and ship those chunks back to Everett. Boeing would simply snap together the parts. No problem. “We call it our Lego airplane,” Frank Statkus, Boeing’s vice president of technology and processes, joked to me at the time.

The improved computer design process was meant to eliminate problems. Previously, Statkus explained, a supplier would sometimes “have to digitize our picture to tell his machine how to build it. This translation sometimes caused errors.”

Well, of course, Boeing didn’t squeeze out all the errors. Production was hampered by ill-fitting parts and structural problems that led to five delays, extending the commercial delivery date two years (it’s now scheduled for late 2010). In 2008, for example, the company found that parts of the center wing box–the massive structure at the center of the plane, extending to two-thirds of the wingspan–required stiffening with new brackets, which in turn forced the re-routing of some wiring. The component–15 meters long and 5 meters wide–had been designed and built by Boeing, Mitsubishi Heavy Industries and Fuji Heavy Industries, in Japan. And, earlier this year, Boeing also had to resolve another structural issue.

Back in 2003, Mark Jenks, Boeing’s director of technology integration told me that the plane was “the future. It really is. It’s a huge deal for us. If we get it wrong, it’s the end. And everyone here knows that.”

After today’s historic flight, and with orders for 840 planes already taken, the hard part may finally be done.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.