Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

How Hubble Could Spot Quantum Foam

The Hubble Space Telescope may be on the verge of finding the first evidence that spacetime is quantised

  • December 7, 2009

The idea that spacetime is quantised at the Planck scale has been around for almost as long as physicists have attempted to reconcile general relativity and quantum mechanics. In the 1960s, John Wheeler coined the term quantum foam to describe the quantised structure of the universe at distances of around 10^-35 metres or so.

One question that has occupied physicists since then is how to detect this foamy structure. Today, Wayne Christiansen at the University of North Carolina at Chapel Hill and a few buddies say that various large telescopes are on the verge of being able to make measurements that could prove the existence of quantum foam or place important limits on its structure.

The thinking goes like this. One of the consequences of spacetime being quantised is that it places a fundamental limit on how accurately distances can be measured.

So imagine that you want to measure distance using a beam of light. This light will be influenced by the structure of spacetime and its wavefront will acquire a similarly foam-like structure. This limits the accuracy of the distance measurements that can be made with this light.

It also effects the way light from a point source should appear since the wavefront has a random foamy element to it. “In effect, spacetime foam creates a “seeing disk”,” says Christiansen and co, and this should be visible on images of certain distant point sources.

The trouble is that the effect is so tiny that it is only visible in images of objects over truly cosmological distances.

That’s OK though, say Christiansen and co, because the Hubble Space Telescope has photographed exactly the kinds of objects that are far enough away to demonstrate the effect. These objects known as high redshift quasars appear in an image known as the Ultra Deep Field.

Their paper today assesses these quasars in the Ultra Deep Field to determine to what extent they show evidence of quantum foam.

And here’s a thing: Christiansen and pals say that these quasars are blurred in exactly the way you’d expect from quantum foam in certain kinds of models of the universe. “The blurring is at a level consistent with a spacetime foam model,” they say.

But that’s not conclusive because the blurring may also have been caused by other effects such as some other scattering medium like dust in the intervening distance. Another possibility is that quasar may not be a true point source and the blurring reflects the structure of the quasar itself.

These are questions that the next round of observations may be able to resolve. Hubble’s recent refit has given it the ability to make better measurements. And the Very Large Telescope Interferometer now under construction could also make valuable contributions when it is completed.

Which means that we could be on the verge of finding the first evidence of the foam-like structure of spacetime. An area to watch.

Ref: arxiv.org/abs/0912.0535: A Cosmic Peek at Spacetime Foam

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.